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Abstract

The quantum Ising model is perhaps the simplest possible model of a quantum magnetic mate-
rial. Despite its simplicity, its versatility and wide range of applications, from quantum compu-
tation, to combinatorial optimization, to biophysics, make it one of the most important models
of modern physics. In this thesis, we develop a general framework for studying quantum Ising
systems with an arbitrary single ion Hamiltonian, with emphasis on the effects of quantum
fluctuations, and the quantum phase transition between paramagnetic and ferromagnetic states
that occurs when a magnetic field is applied transverse to the easy axis of the system.

The magnetic insulating crystal LiHoF, is a physical realization of the quantum Ising
model, with the additional features that the dominant coupling between spins is the long range
dipolar interaction, and each electronic spin is strongly coupled to a nuclear degree of freedom.
These nuclear degrees of freedom constitute a spin bath environment acting on the system. In
this thesis, we present an effective low temperature Hamiltonian for LiHoF, that incorporates
both these features, and we analyze the effects of the nuclear spin bath on the system. We find
the lowest energy crystal field excitation in the system is gapped at the quantum critical point
by the presence of the nuclear spins, with spectral weight being transferred down to a lower
energy electronuclear mode that fully softens to zero at the quantum critical point. Further-
more, we present a toy model, the spin half spin half model, that illustrates the effects of an
anisotropic hyperfine interaction on a quantum Ising system. We find the critical transverse
field is increased when the longitudinal hyperfine coupling is dominant, as well as an enhance-
ment of both the longitudinal electronic susceptibility and an applied longitudinal field.

In addition, we present a field theoretic formalism for incorporating the effects of fluctua-
tions beyond the random phase approximation in general quantum Ising systems. We find that
any regular on site interaction, such as a nuclear spin bath, does not fundamentally alter the
critical properties of a quantum Ising system. This formalism is used to calculate corrections

to the magnetization of LiHoFj,.

i



Preface

In this thesis, we study fluctuations and phase transitions in quantum Ising systems, of which
the fascinating magnetic material LiHoF, is a particular example. The study of LiHoFy, in
particular, the study of the effect the nuclear degrees of freedom have on the system, was sug-
gested by Dr. Philip Stamp. All the research carried out in this thesis, and the tools developed

for that purpose, are the work of the author.
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change coupling between spins. We take the strength of the hyperfine in-
teraction to be the same as the strength of the exchange interaction. We
see the lower mode softens to zero in a quantum phase transition and the
associated spectral weight diverges. The middle mode carries most of the
spectral weight throughout the rest of the diagram. . . . . . ... ... ..
The plots above show the RPA modes (left), and their associated spectral
weight (right), of the spin half spin spin half model with an anisotropic hy-
perfine interaction, calculated from the Green’s function, equation (4.74),
at zero wavevector k = 0. We work in units of J, the strength of the ex-
change coupling between spins. Here, the transverse hypefine interaction
has the same strength as the exchange interaction, and the longitudinal hy-
perfine interaction is a factor of two smaller. We see the lower mode softens
to zero in a quantum phase transition and the associated spectral weight di-
verges. The middle mode carries most of the spectral weight throughout
the rest of the diagram. . . . . . . . .. ... ... ... ... ...
RPAModes . . .. . ...
Spectral Weight . . . . . . . . ..o
The plots above show the RPA modes (left), and their associated spectral
weight (right), of the spin half spin spin half model with an anisotropic hy-
perfine interaction, calculated from the Green’s function, equation (4.74),
at zero wavevector k = 0. We work in units of J , the strength of the ex-
change coupling between spins. Here, the transverse hypefine interaction
has the same strength as the exchange interaction, and the longitudinal hy-
perfine interaction is a factor of ten smaller. The RPA modes and their
spectral weight are colour coordinated. We see the lower mode softens to
zero in a quantum phase transition and the associated spectral weight di-
verges. The middle mode carries most of the spectral weight throughout

the rest of the diagram. . . . . . . . . ... ... ... ... .. ... ...

Xiii

88

89



Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6
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LiHoF, in the random phase approximation, along with the lowest energy
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In this figure, we plot the mean field longitudinal magnetization of the
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nuclear spins. We assume an isotropic hyperfine interaction, with A, =
AL =001 o
The figure above shows the MF longitudinal magnetization of LiHoF4
(dashed line), along with the leading order correction calculated from equa-
tion (7.17), as a function of the transverse field By. The point at which the
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Chapter 1
Introduction

Magnetic materials have a venerable history. They were of interest to Thales, often considered
the first known philosopher, in the 6th century BC. However, according to Aristotle, Thales
believed a magnet’s ability to attract iron filings was due to its soul [1]. Although magnets
were put to practical use as compass needles as early as 1000AD, there was little improvement
in the understanding of magnetism for over two millennia. This changed during the scientific
revolution, starting in 1600 with the publication of William Gilbert’s book, De Magnete. This
book is remarkable for its reliance on empiricism, and for Gilbert’s contempt for some of the
established beliefs of his time. Gilbert looked for truth ”in things themselves,” rather than
relying on the beliefs of his predecessors. The magnetic field of the earth is perhaps the best
known of Gilbert’s discoveries [2].

Over the following centuries, many of the world’s best scientists developed the theory of
electricity and magnetism, and shed light on the connection between the two, relying on ex-
periment to be their guide. This culminated with the publication of the electromagnetic field
equations of James Clerk Maxwell in 1873. These equations explained light as an electro-
magnetic phenomenon, a discovery that was fully illuminated by Einstein’s special theory of
relativity at the start of the 20th century. Despite the success of Maxwell’s electromagnetic
theory, an understanding of magnetic materials remained elusive.

In the early part of the 19th Century, André-Marie Ampere, building on Hans Christian Oer-
sted’s discovery in 1820 that a current carrying wire could deflect a compass needle, proposed
that the magnetic properties of materials may be due to continually flowing microscopic elec-
tric currents inside the material [2]. In the latter part of the 19th century, through experiments,
Pierre Curie deduced that each atom in certain magnetic materials (paramagnets) that lack a
spontaneous magnetization, behaves like a little magnet whose orientation may be altered by
an applied magnetic field, or, the collective behaviour of which, may be altered by a change in

temperature. This led Pierre Weiss to propose that in certain materials with a permanent mag-



netization (ferromagnets) there was an internal field responsible for aligning each little magnet.
However, at the time, there was no known mechanism that could produce the field necessary
in most materials. In 1926, the quantum mechanical exchange interaction was discovered by
Heisenberg and Dirac [3, 4]. This interaction proved to be typically responsible for the dom-
inant interactions between the atomic magnetic moments in magnetic materials, and is strong
enough to account for the fields observed in a ferromagnet. Although the exchange interaction
is the dominant interaction in most magnetic materials, there exist exceptions. In magnetic
materials where the electrons are tightly bound to their host atoms, the exchange interaction
will be weak. In this case, the dominant interaction may be the dipole-dipole interaction be-
tween the magnetic moments at each atomic site. This thesis will deal with a material in which
dipolar interactions are dominant, viz., the magnetic insulating crystal LiHoFy.

Weiss’ mean field (MF) approximation, in which each atomic magnet, or spin (the magnetic
moment of a particle is proportional to its intrinsic quantum property of spin), responds to
the average field produced by all other spins in the material, is of primary importance in the
study of magnetic materials because, at a qualitative level, it produces many of the features
of a magnetic substance, such as the phase diagram, the magnetization, and the susceptibility.
In order to obtain quantitative agreement between theory and experiment, or to understand
the behaviour of a magnetic system as it undergoes a phase transition, it is often necessary
to go beyond MF theory. Much of this thesis will be devoted to systematically determining
corrections to the MF approximation.

The simplest correction to MF theory is known as the Gaussian approximation, or equiva-
lently, the random phase approximation (RPA). As discussed in many textbooks, for example
[5], phenomenological Landau theory involves writing down an energy functional for the mag-

netization of a system
N N 212
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where Z[M(7)] is a function of the magnetization, and the gradient term represents the energy
cost of the spatial variation of the magnetization. In the MF approximation, we assume M (¥) =
M is constant, and minimize .Z'(M) to find the mean field. In the Gaussian approximation, we
expand Z[M (7)] for small M(7), and truncate at quadratic order. The free energy of the system
may then be calculated from

F= —ﬁln( / IM(7) eﬁL), (1.2)

where f3 is the inverse temperature, and [ ZM(7) denotes a functional integral is to be per-



formed over every configuration of the magnetization. In this thesis we will use [ Zx to denote
a functional integral, and we will use [ dx to denote ordinary integration. The Gaussian approx-
imation allows for a system to fluctuate around its MF; however, these fluctuations are treated
as non-interacting. In this thesis, we will rigorously derive equations such as (1.2), starting
from a microscopic model, and we will systematically determine corrections to the Gaussian
approximation.

The Ising model, in its simplest guise, is a microscopic model of a magnetic material in
which the spins are arranged on a lattice, and each spin may only point up or down. There
is an energy associated with every configuration of the spins depending on the interaction
energy between neighbours. This is perhaps the simplest possible microscopic model of a
magnetic material. The model was given to Ising, by Lenz, in an attempt to better understand
ferromagnetism and phase transitions. Ising solved the model in one dimension in his 1924
thesis, and found no evidence of a phase transition to a ferromagnetic state. He concluded that
this held true in higher dimensions; however, this was shown to be false by an argument made
by Peierls [6]. Peierls divided a two dimensional square lattice into postive and negative regions
corresponding to spin up and spin down. He then showed that at a low enough temperature the
area encapsulated by one region may be smaller than the area encapsulated by the opposite
region, which leads to the conclusion there will be an excess of one spin or another. In 1944,
a rigorous solution to a two dimensional Ising model was published by Onsager [7]. This
solution clearly showed a transition from a paramagnetic to a ferromagnetic state at a critical
temperature 7, and showed the specific heat of the system is divergent at the critical point in
the thermodynamic limit, i.e., there is a continuous phase transition. The deceptively simple
Ising model is able to exhibit complex behaviour.

The Ising model will be a central topic of this thesis. However, we will not be concerned
with the classical Ising model discussed above, in which each spin points up or down S$° €
{1,—1}. Instead, we will be concerned with the quantum Ising model in which we promote $*
to a quantum spin operator. In, for example, a transverse magnetic field, this allows for spins to
be in a superposition of states. At low temperatures (T ~ 1K), the magnetic insulating crystal
LiHoF;, is a physical realization of the quantum Ising model. The anisotropy of the system is
a result of the crystal electric field, due to the surrounding ions (the ligands), that mixes and
splits the J = 8 electronic multiplet of the holmium ion. In the absence of an applied magnetic
field, spectroscopy and susceptibility experiments find a degenerate ground state separated
from the first excited state by a gap of around 11K [8-10]. LiHoF4 has the additional feature
that the observed ferromagnetic order stems from the dominant dipolar interaction between the
electronic spins, rather than the exchange interaction. Furthermore, each Ho’>* ion is strongly

coupled to its spin I = % nucleus [11]. The interaction between the electronic and nuclear



degrees of freedom is known as the hyperfine interaction, and is of primary interest in this
thesis.

In this thesis, we will focus on LiHoF4. However, we note that many of the procedures
carried out on the LiHoF, Hamiltonian, and the tools developed for the study of the system,
are applicable to the rest of the LiReF, series (Re=rare earth), and to other quantum Ising
systems. Large single crystals of materials in the LiReF, series (of very high quality in the
case of LiHoF,) can be grown from a melt, making them well suited for research [12]. The
LiReF, series displays a range of interesting behaviour. Both LiHoF, and LiTbF, are dipolar
coupled Ising ferromagnets; however, in LiTbF, the lowest two MF energy levels are gapped
even in zero transverse field and the hyperfine interaction is roughly half as strong as in LiHoF4
[13, 14]. The material LiErF, is a dipolar coupled XY antiferromagnet [15]. The rare earth
elements in LiReF; compounds may be mixed, or replaced by non-magnetic yttrium, leading
to interesting spin glass behaviour [16], in which the magnetic moments freeze in a random
manner.

The dipolar coupling between spins caused a great deal of early interest in LiHoF,, as
the upper critical dimension (the dimension above which there is MF critical behaviour) of a
dipolar coupled Ising system is three, whereas in an exchange coupled system the upper critical
dimension is four. The properties of a magnetic system near a phase transition obey power laws
because of the scale invariance of the underlying theory. For example, the magnetization of an
Ising system varies as m ~ (T, — T')B for T < T.. Above the critical dimension, this behaviour
may be understood using Landau MF theory, in which case we find 8 = %; below the critical
dimension, fluctuations play a key role. The renormalization group provides a method for
systematically determining the effect of fluctuations, and can be used to determine critical
exponents such as 8 [5]. A system at its critical dimension is known as marginal.

In 1969, Larkin and Khmel’nitzkii showed that a dipolar coupled Ising system in three di-
mensions is expected to have MF critical exponents with logarithmic corrections [17]. Renor-
malization group calculations later established this as the marginal critical behaviour of such
systems [18-20]. In the thermodynamic limit, the Fourier transform of the longitudinal dipolar

interaction (the dipole wave sum) in the long wavelength limit has the form

k2
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where the coefficients depend on details of the underlying lattice, and, due to the nature of the
long range dipolar interaction, the zero momentum summation depends on the sample shape.
The a; term in the dipole wave sum is not well defined in the zero momentum limit. This

ambiguity is removed if a finite sized sample is considered, in which case the dipole wave sum



becomes
Dy = Do+ aak® +azk2 +--- (1.4)

It is the a; term in equation (1.3) that leads to the dipolar fixed point, with logarithmic cor-
rections to MF critical behaviour, in a renormalization group treatment of a dipolar coupled
system. Carrying out renormalization on a term that is not well defined in the long wave-
length limit seems like a questionable procedure, nevertheless, the dipolar fixed point has been
observed in experiments [21].

In 1978, Beauvillain et al. investigated the critical behaviour of the dipolar coupled material
LiHoF, using magnetic susceptibility measurements; however, they were unable to differenti-
ate between MF critical behaviour and the logarithmic corrections expected at the marginal di-
mension [22]. Magnetization measurements made by Griffin ez al. in 1980 definitively showed
evidence for the logarithmic corrections to MF behaviour [23]. The marginality of the critical
behaviour of LiHoF, is reviewed in a 2001 paper of Nikkel and Ellman, in which they present
further evidence for marginality based on specific heat measurements [21].

It is the marginal critical behaviour that sparked early interest in LiHoF,4; however, in this
thesis, our focus won’t be on the marginal critical behaviour due to the dipolar interaction,
rather, we will concern ourselves with LiHoF,’s other main feature, the coupling to the nuclear
degrees of freedom. Furthermore, we will be primarily interested in LiHoF,4 in an applied
transverse magnetic field that splits the degenerate ground state.

The degenerate ground state doublet of LiHoFs may be split by the application of a mag-
netic field transverse to the easy axis of the crystal, making LiHoF, a physical realization of
the transverse field quantum Ising model (TFIM). This model was introduced by de Gennes in
1963 to account for protons tunneling between two different states in the ferroelectric phase of
KH;POy, and is discussed in a somewhat more general context in a 1966 paper of Brout et al.
[24, 25]. The TFIM has a wide range of applicability beyond ferroelectric and ferromagnetic
materials. For example, in a Jahn-Teller system spin up and spin down states may correspond
to different distortions of the crystal lattice. The coupling between “spins”, and the effective
transverse field, are due to the crystal electric field of the system. For a list of real systems
to which the TFIM model can be applied see [26]. A transverse field applied to a quantum
Ising system is able to destroy the ordered phase of the system at any temperature. At zero
temperature, a transverse magnetic field of about 4.9T applied to LiHoF, is able to destroy the
ferromagnetic order of the system in a quantum phase transition [27].

A quantum phase transition (QPT) is a zero temperature phase transitions driven by quan-

tum fluctuations between competing quantum ground states, whose energy depends on some



control parameter such as magnetic field, pressure, or doping. These differ from classical
phase transitions, which are driven by thermal fluctuations. In a classical system the kinetic
and potential parts of the Hamiltonian, H(p,q) = Hyin(p) + Hpo: (¢), commute (we use p and
q to represent the three dimensional momenta and positions of all N particles in the system).
This means that static thermodynamic properties of a classical system, which follow from the

partition function
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may be studied without considering the dynamics. In a quantum system the kinetic and poten-
tial parts of the Hamiltonian are operators that might not commute. Therefore, the dynamical
behaviour of the system must be included when studying its static thermodynamic properties.
This is an essential part of the study of QPTs.

Phase transitions are generally classified as either first order, or continuous. In a first order
transition, such as the transition between water and ice, the two phases may coexist at the tran-
sition point. In a continuous phase transition, this ceases to be the case. The ferromagnetic to
paramagnetic transition of the TFIM is an example of such a transition. The study of continu-
ous QPTs is interesting, as they are prevalent in nature, occurring in materials such as high T,
superconductors, and heavy fermion systems, and the effects of a QPT on the properties of a
material extend to regions of the phase diagram away from the quantum critical point [28-30].
The TFIM is perhaps the simplest system that undergoes a continuous QPT.

A system that undergoes a continuous phase transition can often be characterized by an
order parameter. An order parameter is a thermodynamic quantity that is non-zero in one
phase, and zero in the other. For example, the longitudinal magnetization serves as an order
parameter in the ferromagnetic to paramagnetic transition of the TFIM. Close to a critical
point, spatial correlations between fluctuations of the order parameter are characterized by the
correlation length &, which diverges at the critical point. Likewise, temporal fluctuations are
characterized by a correlation time &;. The correlation time is related to the correlation length
by &; = 2. The dynamic critical exponent z follows from an anisotropy in the scaling of space
and time under scale transformations (renormalization) of a system. It is model dependent, for
example, the TFIM has z = 1, meaning that time effectively acts as an extra spatial dimension
in the quantum critical regime, whereas for an itinerant antiferromagnet z = 2. In general, the
effective dimensionality of a system near a quantum critical point will be d, s = d + z, with the
additional dimensions stemming from temporal fluctuations. For more details on the dynamic
critical exponent and the effective dimensionality of a system near a quantum critical point, see
the original work of Hertz [31].



The partition function of the TFIM at zero temperature has been mapped to a classical
model in one higher dimension by Suzuki [32]. This is an explicit example of the shift in
effective dimensionality of a quantum system due to temporal fluctuations. More generally, we

may write the partition function of a quantum system as

Z:/@M(?,r)exp(—/d?/ohﬁdr .z[M(?,r)]), (1.6)

where .Z[M(7,7)] is the Lagrangian of the (fluctuating) order parameter of the system. We
work with imaginary time 7 = it. Written in this way, it appears that time manifests itself
in the quantum partition function as an additional dimension with a domain determined by
B, the inverse temperature. This is misleading because under renormalization space and time
might not scale isotropically leading to a dynamical critical exponent z # 1. Suzuki’s mapping
clearly demonstrates that for the TFIM the dynamic critical exponent is z = 1. The transverse
Ising system LiHoF, also has z = 1; however, the complicated single ion Hamiltonian make an
explicit mapping to a higher dimensional classical system impracticable, and it is necessary to
deal with the quantum Hamiltonian.

Despite the fact that temporal fluctuations in a quantum system effectively manifest them-
selves as additional spatial dimensions, with d,rr = d + z, QPTs are of fundamental interest
because their behaviour can be qualitatively different from that of their classical counterparts.
There are many reasons for this. For example, in a system with random disorder in space, the
disorder will be infinitely correlated in time. Typically, this causes the effects of disorder to be
stronger in quantum systems. See the book of Sachdev for further discussion of this point [28].
Another example, discussed in the reviews of Vojta, Belitz and Kirkpatrick [29, 33, 34], is that
the presence of soft modes in a quantum system (not including the order parameter fluctuations)
may fundamentally alter its critical behaviour. This is due to long range dynamical interactions
between the order parameter fluctuations not necessarily present in classical systems.

In LiHoF,, where the upper critical dimension of the classical phase transition is three, we
expect MF critical behaviour in the quantum regime where, due to the quantum to classical
correspondence, the effective dimensionality is four. Such behaviour is observed in the 1996
susceptibility measurements of Bitko ef al., where the quantum regime is accessed by varying
the transverse field near zero temperature [27]. In this thesis, we will investigate the effect of
the nuclear degrees of freedom on this QPT.

Bitko et al. note that, due to the strong hyperfine interaction, the nuclear degrees of free-
dom in LiHoF4 have a significant impact on the system’s phase diagram. At low temperatures,
the hyperfine interaction stabilizes the ferromagntic phase against the effects of the transverse

magnetic field [27]. The hyperfine interaction also manifests itself in specific heat measure-



ments. Each electronic eigenstate is split into eight electronuclear levels by the I = % nuclear
spin, and, as discussed in a 1983 paper of Mennenga et al., these electronuclear degrees of
freedom exhibit themselves as a Shottky type contribution (a significant increase) to the low
temperature specific heat [35]. The electronic excitation spectrum of LiHoF, is also strongly
affected by the hyperfine interaction. In a continuous quantum phase transition, the energy
required for order parameter fluctuations is expected to soften to zero at the quantum critical
point. The TFIM undergoes such a transition. In 2005, Rgnnow et al. published neutron scat-
tering experiments that show that what should have been the electronic soft mode in LiHoF4
is gapped by the presence of the nuclear spins [36]. Although the soft mode is gapped, the
longitudinal magnetization of the system, which serves as an order parameter, goes to zero
continuously at the critical point, which is characteristic of a continuous phase transition. An
analysis of this behaviour based on an effective low temperature Hamiltonian for LiHoF, is an
important part of this thesis. Much of the physics of LiHoF, discussed so far is illustrated in
Figure 1.1, taken from [36].

Our analysis of LiHoF,; begins in Chapter 2, where we present the Hamiltonian of the
system with a discussion of each term, and the expected domain formation in the material.
We then derive a low temperature effective Hamiltonian for LiHoF, that fully incorporates the
nuclear degrees of freedom. No such model exists in the literature. We find that the effective
transverse magnetic field acting directly on the nuclear spins is quite large, a fact that has been
overlooked by past researchers. This field originates from a shift in the 4f electron cloud
surrounding each holmium ion due to the applied transverse magnetic field. In Chapter 3, we
take the Fourier transform of the long range dipolar interaction present in LiHoF,. Although
our focus is not on the dipolar coupling between the electronic spins, and the resultant critical
behaviour, the dipolar interaction is an important aspect of the material, so the interaction is
dealt with in detail.

An alternative effective Hamiltonian for LiHoF, has been developed by Schechter and
Stamp [37, 38]. In their work, a set of eight pseudospin operators are introduced to account for
transitions between low energy electronuclear eigenstates. When compared to the Hamiltonian
derived in this thesis, this pseudospin Hamiltonian is rather cumbersome to work with. Fur-
thermore, the pseudospin Hamiltonian does not make clear that the hyperfine interaction leads
to a significant effective transverse magnetic field that acts directly on the nuclear spins, as dis-
cussed in the previous paragraph. This field plays a crucial role in determining the behaviour
of the system near its quantum critical point.

After discussing the Hamiltonian of real LiHoF, in Chapters 2 and 3, we turn to a toy model
that elucidates some of the physics of quantum Ising systems coupled to nuclear degrees of

freedom in Chapter 4. The toy model consists of an exchange coupled spin half Ising system,
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Figure 1.1: The above figure, taken from the paper of Rgnnow et al., illustrates many as-
pects of the magnetic insulating crystal LiHoF,. In A, we see the phase diagram as
determined by magnet susceptibility (circles) and neutron scattering (squares). At
low temperatures, we see that the ferromagnetic phase is stabilized by the hyperfine
interaction. In B, we see the gap in the spectrum at what would be the electronic
soft mode in the absence of hyperfine interactions. The dashed line shows the soft
mode in the absence of the hyperfine interaction. Diagram C is a schematic illus-
tration of the electronic eigenstates split into multiplets by the nuclear degrees of
freedom. Finally, in D, we see the ratio of the energy gap E. shown in diagram B, to
the splitting of the two lowest MF electronic energy levels (A), plotted as a function
of temperature.



coupled to a spin half nuclear spin with an anisotropic hyperfine interaction, in the presence of
a transverse magnetic field. This spin half spin half model (SHSH) shows that an anisotropic
hyperfine interaction, with a dominant longitudinal component, leads to an enhancement of
the longitudinal susceptibility of an Ising system, as well as an enhancement of an applied
longitudinal field. Furthermore, this model clearly illustrates the gap in the electronic spectrum
caused by the nuclear spins. We see that spectral weight of the gapped mode is transferred
to a low energy electronuclear mode that fully softens to zero at the quantum critical point.
In Chapter 5, we apply what we have learned studying the toy model to the effective low
temperature Hamiltonian of LiHoFj,.

Above, we have introduced the quantum Ising system LiHoF,, and discussed two of its key
features: the dipolar interaction, and the strong coupling to the nuclear degrees of freedom.
As mentioned, our primary interest in the system is due to the hyperfine interaction. This
stems from the fact that the nuclear spins in LiHoF, can be viewed as a spin bath environment
acting on the electronic degrees of freedom. The physics of such an environment has been
elucidated in the work Prokof’ev and Stamp [39]. Early work on quantum systems coupled
to environmental degrees of freedom was carried out by Feynman and Vernon in their seminal
1963 paper on influence functionals, in which they considered a quantum system coupled to an
environment consisting of a bath of harmonic oscillators [40]. Performing an average over the
oscillator bath degrees of freedom yields the influence functional, which encodes the effects of
the environment on a quantum system. This approach was further developed by Caldeira and
Leggett to make quantitative predictions about macroscopic systems of practical importance
such as SQUIDs [41]. Caldeira and Leggett consider a single two state system coupled to
a bath of harmonic oscillators. If all but one of the holmium ions in LiHoF, are replaced
with non-magnetic yttrium ions, the resulting crystal is a physical realization of the Caldeira-
Leggett model, with the oscillators being the phonons in the crystal. More accurately, as the
electronic holmium spin is coupled to a nuclear spin, the model consists of a pair of interacting
spins coupled to an environmental sea (PISCES). The PISCES model was considered in a 1998
paper by Dubé and Stamp [42], although, because the coupling between the nuclear spin and
the phonons in a holmium ion embedded in LiYF, is very weak, it is a poor realization of the
model studied in [42].

We have discussed both a spin bath environment and an oscillator bath environment. Per-

haps the best way of clarifying the difference between the two is with a representative model
J — —
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Here we consider an exchange coupled transverse Ising system, coupled at each site to addi-
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tional degrees of freedom I. We consider a diagonal coupling, but this does not necessarily
have to be the case. The Is could be nuclear spins, or they could equally well be a collection
of crystal defects, or other impurities, that couple to the Ising spins. The final two terms repre-
sent a bath of harmonic oscillators (bosons) with a longitudinal coupling to each spin. Again,
the coupling does not necessarily have to take this form. This bath of bosons could represent
phonons in a crystal. If a set of N environmental modes is weakly coupled to the system of
interest, it is possible to map them to an oscillator bath type environment consisting of delocal-
ized modes belonging to an infinite dimensional Hilbert space. As discussed by Prokof’ev and
Stamp [39], if the coupling to the environmental modes is strong (independent of the number
of modes in the system), no such mapping to an oscillator bath environment is possible. These
environmental modes constitute the spin bath environment {/'}, each element of which be-
longs to a finite dimensional Hilbert space, and couples to the system in a manner independent
of the number of spin bath modes.

The result of an environment acting on a quantum system is decoherence. The state of a
quantum system may be specified by its wavefunction |¥) = ¥; ¢;|¢;), with the corresponding
density operator being p = [¥)(¥| = ¥;; cic}|¢:)(¢;|. Performing an average over the environ-
mental degrees of freedom in the density matrix yields the reduced density matrix of the system
alone. If the system is entangled with its environment (this means the wavefunction of the sys-
tem plus the environment can’t be written as a simple product [¥) = |@)cn @ |0)s,s), averaging
over environmental degrees of freedom causes phase relations between different components
of the system to be lost. This is because the system’s phase information may be distributed
amongst the environmental degrees of freedom. This causes the reduced density matrix to be-
come a mixed state obeying the laws of classical probability rather than being a pure quantum
state. Decoherence lies at the heart of the quantum to classical transition and, possibly, the
measurement paradox in quantum mechanics, as well as being of great practical importance
for the development of quantum computation. In a quantum computation, entanglement be-
tween quantum states must be maintained long enough to carry out meaningful manipulations.
Decoherence destroys this entanglement, and it is necessary to mitigate, or control, the effects
of decoherence in order to carry out meaningful quantum computations.

The spin bath environment is a particularly inimical source of decoherence because it per-
sists down to zero temperature. At zero temperature, precession of the bath spins between spin
flips in the system of interest, as well as exchange of phase information between the system
and the bath when a system spin flips, leads to dechorence [39]. Controlling decoherence due
to a spin bath environment is essential in the effort to build a quantum computer.

Quantum annealing is a method of quantum computation that takes advantage of quantum

tunneling to facilitate finding the (approximate) ground state of a system with an energy land-
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scape consisting of many local minima separated by high and narrow energy barriers. In a

frustrated quantum Ising model,

H=—Y V;SiS, (1.8)
ij

there may be no single ground state consisting of an orderly arrangement of the spins. Frustra-
tion stems from V;; assuming positive and negative values, or from certain underlying lattices,
for example, a triangular lattice, in antiferromagnetic systems. A frustrated Ising system is
often referred to as the Ising spin glass model because it may have a spin glass ground state. A
frustrated quantum Ising system may have an energy landscape amenable to quantum anneal-
ing. Quantum annealing involves applying a strong transverse field to a quantum Ising system,
then weakening the field so that the system can attempt to settle into its ground state. A quan-
tum system may tunnel out of local minima in the energy landscape allowing the system to
achieve its ground state faster than if energy barriers are overcome by repeatedly heating and
cooling the system, as in thermal annealing. Many problems with significant practical appli-
cations, such as the traveling salesman, and the graph partition problem, can be mapped to
a an Ising spin glass model [43]; however, the energy landscape of these problems does not
necessarily give quantum annealing an advantage when trying to find their ground state. Find-
ing problems with industrial significance that map to the Ising spin glass model, and have an
energy landscape amenable to quantum annealing, is a major challenge facing those interested
in the commercial development of the field.

Quantum annealing has received a great deal of media attention in the past several years
due to the commercial development of a quantum annealer by D-Wave Systems. D-Wave
artificially engineers systems with an Ising spin glass Hamiltonian by making use of super-
conducting flux qubits, in which the qubits (Ising spins) are superconducting loops in which
the current can circulate clockwise, or counterclockwise. Recently, D-Wave has achieved the
remarkable feat of linking over 1000 of these flux qubits, and the resulting quantum annealer
is benchmarked in [44]. The D-Wave annealer clearly demonstrates that quantum tunneling
is being utilized to find the ground state of a certain realization of the Ising spin glass model.
However, due to limited connectivity between the qubits, and rapid decoherence times, it is
unclear whether or not the machine will offer a practical advantage over a classical computer.
A superconducting flux qubit quantum annealer with longer coherence times, and better con-
nectivity, than the D-Wave machine is under development by John Martinis’ group. Martinis
hopes to have a functioning quantum annealer consisting of about 100 qubits as soon as 2017.
More information can be found in the following MIT technology review article [45].

The development of a superconducting flux qubit quantum annealer is seriously hindered

12



by the problem of achieving high connectivity between the constituent qubits. One possibility
for circumventing this difficulty is to engineer Ising spin glass systems by trapping atoms in an
optical lattice. Different states of the trapped atoms serve as the Ising spins, and the interactions
between the spins are mediated by phonons whose interactions can be tuned through the optical
lattice [46]. Two dimensional lattices consisting of up to 350 trapped atoms have been achieved
[47]. There have been recent proposals of how to make use of trapped atoms in an optical lattice
as a quantum annealer to solve the number partition problem, which is a problem that maps
to the Ising spin glass model, and that may have an energy landscape amenable to quantum
annealing [48].

When LiHoF, is doped with non-magnetic yttrium, the frustrated nature of the long range
dipolar interaction leads to an energy landscape amenable to quantum annealing. It was in
LiHo,Y|_.F4 that, in 1999, Brooke et al. first demonstrated the practicality of quantum an-
nealing [49]. The study of LiHo,Y|_,F4 is interesting in its own right as the system has many
interesting features. For example, as discussed by Schechter, off diagonal dipolar couplings in
the doped material effectively induce a longitudinal random field [50]. The critical behaviour
of a dipolar coupled Ising model in the presence of a random field is discussed for Mnj; ac-
etates by Millis ef al. [51]. The Mnj; acetate system is quite similar to the doped LiHoF,4
system; however, Mn; is simpler because hyperfine interactions play no role in the thermody-
namics. Also, LiHo,Y_,F4 will undergo a spin glass transition below a critical value of the
doping of at most x, = 0.46, as discussed by Reich ef al. [52, 53]. A spin glass is a system
where the spins freeze in a randomly aligned manner with a transition that may be character-
ized by the divergence of the non-linear susceptibility x3, where, expanding the magnetization
about small applied fields, y3 is defined by M(H) = yH + y3H> + ysH> + - - -, as discussed in
a 1977 paper of Suzuki [54]. The theoretical analysis of spin glass in dilute magnetic mate-
rials such as LiHo,Y_,F4 is complicated by the quenched nature of the disorder, that is, the
non-magnetic impurities are not in thermodynamic equilibrium, and it is necessary to consider
a set of replicas of the system, where a different realization of the disorder may be present in
each replica, in order to obtain meaningful results [43]. The spin glass phase of LiHo,Y|_,F4
has been of particular interest because the dynamic susceptibility of dilute samples appeared
to exhibit anomalous (antiglass) behaviour [55]. Evidence for this anomalous behaviour has
not been borne out in more recent experiments [56]; however, the role of the nuclear spins on
the dynamics of the doped system remains an interesting problem [37, 38]. A review of the
physics of LiHo, Y| _,F4 is available in [57].

Our focus in this thesis is on fluctuations and phase transitions in quantum Ising mod-
els, rather than on decoherence and the other challenges facing the development of quantum

computation, or the interesting behaviour of LiHo,Y_,F4. The prevalence of quantum Ising
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systems in nature make this an interesting topic in its own right, particularly when the system
is coupled to additional degrees of freedom. In Chapters 2, 4, and 5, we have analyzed LiHoF,,
and the spin half spin half model, within the random phase approximation (RPA), thus elucidat-
ing the effects of the nuclear degrees of freedom. As mentioned in the opening paragraphs of
this introduction, a goal of this thesis is to systematically determine corrections to the RPA. We
do so by developing a field theoretic formalism for quantum Ising systems. The inclusion of
the effects of fluctuations beyond the RPA is important for model determination, particularly
in dipolar coupled systems where, due to the frustrated long range nature of the interaction,
the effects of fluctuations can be significant. Furthermore, the field theoretic formalism that
we develop in Chapter 6 of this thesis has a great deal of versatility, and applications beyond
model determination, such as the spin glass problem discussed above, and the behaviour of
systems with time dependent parameters. Future applications of the field theoretic formalism
are discussed in the closing chapter of this thesis.

We develop the field theoretic formalism by making use of the well known Hubbard-
Stratonovich transformation to decouple the interaction between spins in the partition function
for the system. We then proceed to integrate over all the microscopic spin degrees of freedom
leaving an effective theory for the Hubbard-Stratonovich field. This procedure was used by
Young in 1976 to discuss the quantum phase transition in the spin half transverse field Ising
model [58]; however, Young does not calculate the coefficients of the resulting theory beyond
quadratic order. In this thesis, we develop the formalism to all orders, and we provide explicit
expressions for the coefficients of the theory to quartic order for a system with an arbitrary
single ion Hamiltonian. We note that this procedure has been extensively developed for itin-
erant magnetic systems, beginning with the work of Hertz [31], and is discussed in the recent
review of Brando er al. [59]. Alternative methods for incorporating the effects of fluctuations
in quantum Ising systems that do not make use of an effective field theory are discussed in the
introduction to Chapter 6. We think that the development of the field theoretic formalism is im-
portant because it allows for a treatment of a system’s critical behaviour via the renormalization
group.

We use the field theoretic formalism of Chapter 6 to develop a diagrammatic perturbation
theory for including the effects of fluctuations in quantum Ising systems, and, in Section 6.3.3,
we show that it is equivalent to the high density approximation (an expansion in the inverse
coordination number) introduced by Brout [60, 61], and presented for the spin half transverse
field Ising model by Stinchecombe [26, 62, 63]. In Chapter 7, we apply the field theoretic
formalism to the calculation of corrections to the MF magnetization of various quantum Ising
systems.

We close this introduction with a brief summary of what we think are the most significant
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accomplishments of this thesis. These are:

1.

A derivation of a low temperature effective Hamiltonian for LiHoF, in a transverse mag-
netic field that fully incorporates the nuclear degrees of freedom in Chapter 2. No such
model exists in the literature. This Hamiltonian shows that the dominant mixing of the
nuclear degrees of freedom is due to an effective transverse field acting directly on the
nuclear spins due to a shift in each Ho>T ions 4 f electron cloud. In Chapter 3, a detailed

analysis of the long range dipolar interaction between the electronic spins is provided.

. In Chapter 4 we introduce a toy model with exactly solvable single ion eigenstates that

elucidates the effect of an anisotropic hyperfine interaction on a quantum Ising system.
We find that a dominant longitudinal hyperfine interaction stabilizes the system against
the disordering effects of an applied transverse field, as well as enhancing both the lon-
gitudinal susceptibility of the system, and the effect of a longitudinal field. The enhance-
ment of a longitudinal field has not been previously noted.

In Chapters 4 and 5, an RPA analysis of the toy model and LiHoF; is provided. The RPA
results clearly show that the effect of the nuclear spins is to gap what would have been
the electronic soft mode in a system with no hyperfine coupling, with spectral weight
being transferred down to a low energy electronuclear mode that fully softens to zero at
the quantum critical point. This explains the neutron scattering experiments carried out
on LiHoF, by Rgnnow et al. [36].

In Chapter 6, a general field theoretic formalism for quantum Ising systems that allows
for the effect of fluctuations beyond the RPA is developed. This field theory is used
to derive a diagrammatic perturbation theory, with the perturbation parameter being the
inverse coordination number, equivalent to the theory introduced by Brout [60, 61], and
applied to the spin half transverse field Ising model by Stinchcombe [26, 62, 63]. We use

the theory to derive corrections to the magnetization of LiHoF, in Chapter 7.

. We find that a regular nuclear spin bath, that is, a single species of nuclear spin coupled to

each electronic degree of freedom, will have no effect on the quantum critical behaviour

of a quantum Ising system.

Despite the fundamental importance of quantum Ising systems, and of the transverse field

Ising model in particular, there has been no significant improvements in Stinchcombe’s work

since its publication in 1973 [26, 62, 63]. Thermodynamic research on quantum Ising systems

has been largely focused on critical behaviour [28], rather than on the more general problem

of the inclusion of the effects of fluctuations beyond the random phase approximation in real
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magnetic systems. In this thesis, we generalize Stinchcombe’s work to systems with an arbi-
trary single ion Hamiltonian, and, by using the field theoretic approach, we provide a derivation
of the diagrammatic perturbation theory that offers a great deal of clarity and simplicity when
compared to past approaches. If the work here becomes more widely appreciated, we hope to
see it applied to Ising systems doped with non-magnetic impurities, antiferromagnets, systems
coupled to an oscillator bath environment, and systems with time dependent parameters. We
think that these topics, in particular the study of disordered systems and non-equilibrium dy-
namics, are among the most important problems of 21% century condensed matter physics, and

believe that the formalism presented here is well suited to the study of such problems.
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Chapter 2

The LiHoF4 Hamiltonian

The rare earth magnetic insulating crystal LiHoF, is a central topic of this thesis. At low
temperatures, LiHoF, is a physical realization of the magnetic dipole coupled quantum Ising
model; however, there is the additional feature that each electronic spin is strongly coupled to a
nuclear degree of freedom. The system undergoes a phase transition from a paramagnetic to a
ferromagnetic state, induced by the long range dipolar interaction, below a critical temperature
of 1.53K [11]. The ferromagnetic order may be destroyed by the application of a magnetic
field transverse to the easy axis of the system. At zero temperature, the ferromagnetic order
is destroyed in a quantum phase transition at a critical value of the transverse field of about
4.9T. The experimental phase diagram, taken from Bitko et al. [27], is shown in Figure 2.1. In
this chapter, we introduce the Hamiltonian of LiHoF,, and derive an effective low temperature
Hamiltonian that includes the nuclear degrees of freedom. The truncation procedure used here
to obtain the low energy Hamiltonian was first employed by Chakraborty et al. [64]; however,
this is the first time the nuclear spins have been fully incorporated. In addition to the derivation
of the low temperature effective Hamiltonian, this chapter includes a discussion of domain
formation in LiHoF4. We note that the Hamiltonian for LiHoF, has many free parameters (the
CF parameters, and the exchange interaction). As these parameters may be tuned in theoretical
calculations, or numerical simulations, claims regarding quantitative agreement between theory
and experiment should be treated with some suspicion. A challenge facing experimentalists is

to better determine the free parameters in LiHoF;,.
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Figure 2.1: The above figure shows the phase diagram of LiHoF,, measured by Bitko et
al. via magnetic susceptibility (solid circles). The vertical axis is the applied trans-
verse field, and the horizontal axis is the temperature. The dashed line is the phase
diagram calculated using mean field theory, neglecting the hyperfine interaction.
The solid line is calculated using mean field theory, with the hyperfine interaction
included. There are several free parameters in the MF calculations which lead to
the apparently good agreement between the experimental data and the MF results.
In reality, fluctuations in the MF have a significant impact on the phase diagram of
LiHoF, due to the dominant long range dipolar coupling between electronic spins.

The Hamiltonian

The magnetic properties of LiHoF are due to the partially filled 4 f shells of the Ho>" ions.

Trivalent rare earth ions shed their two outer 6s electrons, and a single 5d electron, leaving a

core with the electronic configuration of xenon, and a partially filled 4 f shell. In the ground

state of Ho>*, there are ten 4 f electrons

that fill the orbital angular momentum eigenstates,

L,e{-3,-2,-2,0,1,2,3}, in accord with Hund’s rules. That is, the total spin of the electrons

is maximized, thereby minimizing the exchange energy between electrons, leading to S = 2;

the total orbital angular momentum is maximized, minimizing the coulomb interaction energy

between electrons, leading to L = 6; and the total angular momentum is given by J = L+ S =8,

thereby minimizing the spin orbit interaction energy. Hund’s rules follow from the Russell-

Saunders coupling scheme, which is known to be accurate for 4 f electrons. The term symbol,
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25+1,, for the Ho>* ion is °Ig. A discussion of the physics of rare earth atoms may be found
in [65].

If we take U(r;) = —eV (r;) = — 47%;; to be the radially symmetric potential of the i’ 4 f
electron in a rare earth element, the spin orbit interaction due to the 4 f electrons is

1 19V(r)
Hyp = -
50 Z 2mic?r; dri

i

[;-5i=+A(LS)S - L=+=""L(J?—1*-§%), 2.1)

where L = Z,-lj- and S = Y 5i, and the + (—) sign refers to a less (more) than half full 4 f shell.
In order to obtain the spin orbit coupling A, we express the spin orbit interaction in a basis
of states of total orbital and spin angular momentum, L2, L. and S, S.. It is a consequence of
the Wigner-Eckart projection theorem that A (LS) is a function of only ||L?|| = L(L+ 1) and
|1S2|| = S(S+1), and not of L, and S,. Holmium’s large atomic number leads to a significant
spin orbit interaction; therefore, we work in a basis of states of the operators L?,S2,J2, and J%.
With the gyromagnetic ratio of the electron taken to be exactly two, the Zeeman energy of a

holmium ion in a magnetic field will be given by
Hy = —up(L+25)-B = —upgrJ - B, (2.2)

where the Bohr magneton is given by up = 0.6717K /T, and we have made use of the Wigner-

Eckart projection theorem in the form
(LSJJ|L+2S|LSJT ) = gr(J JF|JJ J) (2.3)

to obtain the final expression. The Landé g factor, with L = 6 and S = 2, is given by

JJ+1)—L(L+1)+S(S+1) 5
2J(J+1) 4

(2.4)

More intuitively, noting that the time average of the spin angular momentum will lie along the

total angular momentum vector

— §'f —
Sawvg = w7 2.5
avg HJZH Y ( )

we may write (L-+2S) = (J+ §avg> which leads to the Landé g factor given in equation (2.4).
After our brief discussion of the electronic configuration of a holmium ion, and the spin

orbit interaction, we move on to the magnetic insulator LiHoF4. The following Hamiltonian
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may be used to model LiHoF4,

H=Y Vc(J) gLuBZBJ — J Y DIty (2.6)
i i#]

EJ”” Y Ji-J; +AZI T,
<ij>

where V¢ (J;) is the crystal field, which will be discussed in Section 2.1.1, and B, is an applied
transverse magnetic field. The dipolar interaction between electronic spins,
3(’”1“ _FH)(’" =T V) — |7 — 7:j|26uv

pv _ J
Dij =

7 : (2.7)

i_rJ|5

has strength Jp = ffg (grpp)?. The summation is over a tetragonal Bravais lattice with four

Ho>" ions per unit cell. The lattice spacing in the xy plane is @ = 5.175A, and the longitudinal
lattice spacing is ¢ = 10.75A. The holmium ions have the Scheelite structure, with fractional
coordinates (0,0,1), (0,%,3), (1,%,0) and (4,0, 1) [66]. In Figure 2.2, taken from the thesis of
Kraemer [16], the structure of LiHoF; is illustrated including all atoms in the unit cell. Using
the in plane lattice spacing as a reference, we find the strength of the dipolar interaction to be
J—D = 7mK. Estimates of the antiferromagnetic exchange interaction vary, as will be discussed
in Section 2.1.1. Throughout this thesis, unless otherwise noted, we will use the estimate of
Rgnnow et al., J,, = 1.16mK [67]. The net spin of the holmium nucleus is I = %, and the
hyperfine interaction is A = 39mK. A discussion of the nuclear interactions is provided in
Section 2.1.2.

Due to the frustrated long range nature of the dipolar interaction, fluctuations have a sig-
nificant impact on the properties of LiHoF,4. The validity of the Hamiltonian given in equation
(2.6), taking into consideration the effect of fluctuations, has been tested via Monte Carlo sim-
ulations, and through the application of a high density approximation (an expansion in the
inverse coordination number). The high density approximation was carried out by Rgnnow et
al. in [67]. They diagonalize the full 136 x 136 electronic plus nuclear single ion Hamilto-
nian in the presence of a transverse magnetic field, and make use of the formalism of Jensen,
presented in [68], to include the effects of fluctuations. By tuning the crystal field parameters,
and the antiferromagnetic exchange interaction, Rgnnow et al. are able to obtain agreement
between theory and experiment for most of the phase diagram; however, no single choice of
parameters was found to account for the entire phase diagram. At low temperatures, Rgnnow
et al. are also able to obtain a good fit to the (gapped) lowest energy crystal field excitation,

apart from an overall scaling factor of 1.15. Magnetoelastic interactions are suggested as a
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possible source of the discrepancy in the excitation energy; however, they appear insufficient
to account for the discrepancies observed in the phase diagram.

Quantum Monte Carlo simulations have been carried out on an effective low temperature
Hamiltonian for LiHoF, in a transverse magnetic field by Chakraborty ef al. [64]. In their
paper, Chakraborty et al. ignore the hyperfine interaction in their low temperature effective
Hamiltonian, choosing instead to incorporate its effects through a sytematic renormalization of
the transverse magnetic field. At a fixed temperature, with 7 < T. = 1.53K, the experimental
critical transverse field is upto 30% larger than the value predicted by Monte Carlo simula-
tions using the same parameters as the work of Rgnnow et al. [67] discussed in the previous
paragraph. Chakraborty et al. attribute the discrepancy to uncertainties in the crystal field pa-
rameters. They find the results of their calculations become increasingly sensitive to the crystal
field parameters as the transverse field is raised. The work of Chakraborty et al. has been revis-
ited by Tabei et al. in a paper in which classical Monte Carlo is used to analyze the B, /T, < 1
regime. Effects due to quantum fluctuations are included in their work perturbatively. The
deviation between experimental and theoretical phase diagrams in increasing transverse field
persists in Tabei et al.’s work, and, by comparing several numerical techniques, they conclude
it is most likely not of computational origin. Tabei et al. test a single set of alternative crys-
tal field parameters, and, provided the antiferromagnetic exchange interaction is adjusted to
obtain the correct zero transverse field critical temperature, they find little difference in the
experimental phase diagram. This leads them to tentatively conclude that in weak transverse
fields the crystal field parameters are not the source of the difference between theory and ex-
periment. Tabei et al suggest anisotropic exchange, higher order multipolar interactions, or
magnetoelastic couplings as possible sources of the discrepancy.

We note that in Chakraborty et al.’s work the hyperfine interaction is incorporated as a
renormalization of the effective transverse field, and in Tabei et al.’s work the hyperfine inter-
action is left out altogether because it is thought to be irrelevant in the regime of interest % <1
[64, 69]. As will be shown in Section 2.2, in zero transverse field the longitudinal hypérﬁne
interaction has a significant magnitude. One might expect that it will stabilize the LiHoF, sys-
tem against the effects of fluctuations, in a way not accounted for by a renormalization of the
effective transverse field. We suggest this as a possible source of the discrepancy between the
theoretical and experimental phase diagrams determined by Monte Carlo simulations.

In Section 2.2, we derive an effective low temperature Hamiltonian for the LiHoF, system
that fully incorporates the effects of the nuclear spins. This Hamiltonian will be used to perform
an analysis of the sytem in the random phase approximation in Chapter 5. In Chapter 6, we will
develop a field theoretic formalism that leads to a high density approximation (an expansion

in the inverse coordination number) to include the effects of fluctuations in quantum Ising
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systems such as LiHoF4. We will defer further discussion of the high density approximation,
and a comparison to the formalism of Jensen used in the paper of Rgnnow et al. [67, 68], to

that chapter.

® Re

© F

‘o
I

Figure 2.2: The figure above, taken from the thesis of Kraemer [16], shows the structure
of materials in the LiReF, series, where Re is a rare earth atom.
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The Crystal Field and Exchange Interaction

The high electronegativity of the fluorine ions in LiHoF, leads to a distortion of the of the
4f electron cloud surrounding each holmium ion, lifting the 17-fold degeneracy of the J = 8
magnetic moment. This perturbation is accounted for by the inclusion of the crystal electric
field V¢ (f,) The physics of the crystal field, which we will review here, is discussed in [70, 71].

The crystal field Hamiltonian due to the ions surrounding each holmium ion (the ligands),

is given by

2 .
e Zj

- . 2.8)
Amey i |Rj — T

Ve =

where e is the electron charge, Z; is the effective charge of the j ligand, and R ; and 7y are
the positions of the j' ligand and k”* electron in the 4 f cloud, respectively. We may expand

equation (2.8) in spherical harmonics to obtain

o n
Ve=Y, Y, AVY riv (6, i) (2.9)

n=0m=—n k
This Hamiltonian may be put in a form more amenable to calculation by writing the spherical
harmonics in terms of their Cartesian coordinates, Y, Y™ (6, ¢r) = f"(x,y,z), and replacing
the functions f;" with spin operators sharing all the same symmetries. This is known as the
Stevens’ operator equivalents method [72-74], and leads to the following expression for the

crystal field Hamiltonian

o n

ve() =Y Y BlOY(). (2.10)

n=0m=—n

The operator equivalents O) corresponds to sums or differences of the spherical harmonics
Y. In practice, the crystal field parameters B are determined by experiments. In rare
earth materials, the summation over n is restricted to n = 2,4,6, and the possible values of
m are restricted by the point group of the crystal in question. For an extensive review of the
crystal field Hamiltonian in rare earth compounds, see [75]. For LiHoF,, the symmetry of the

tetragonal crystal (scheelite, or space group Cgh —14y,) leads to a crystal field given by

Ve(J) = BYOS + BYOY + BLOY + B(C)O4(C) + BAC)OA(C) + BA(S)04(S) + BAS)OA(S).
2.11)
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where the Stevens’ operators are

0Y=372—-J(J+1) (2.12)

0§ =357 =30J(J + 1)J2 +2572 —6J(J+ 1) +3J2(J +1)*

09 = 231J8 = 315J(J + 1)J7 + 73572 +105J%(J + 1)2J2 — 5257 (J + 1)J* 4+ 294J2
—SPJ+1)3+402(T+1)>—60J(J +1)

04(C) = Lt 104

2
1

0¢(C) = Z(Ji I M2 =TT +1) —38] +h.c.
1

04(8) = Z(Ji—ff)
1

0L(S) = 4—i(Ji — IO =TI+ 1) —38] +hec.

We use h.c. to denote the Hermitian conjugate.

In LiHoF,, the crystal field induces strong anisotropy leading to the Ising nature of the
material. Typically, in a crystal with tetragonal symmetry, the n = 2 terms are dominant. It
is easy to see how this leads to anisotropy by considering only the 08 term and the Zeeman

energy of the mean field
H=B0) — grusJ -B. (2.13)

By diagonalizing the Hamiltonian above, we find that with Bg < 0 the ground state energy
of the system is minimized if the mean field (MF) is in the z direction (the long axis of the
tetragonal crystal), and if Bg > 0 the preferential direction for ordering is in the xy plane. The
sign of B(z) depends on whether the 4 f electron cloud of the rare earth element is flattened in
the z direction (Bg < 0), or elongated in the z direction (Bg > (). In LiHoFy, Bg < 0 and there
is strong Ising anisotropy.

The crystal field parameters (CFPs) of LiHoF,; have been measured via a number of ex-
perimental techniques, by many different groups; however, no consensus has been reached
regarding their values. An early estimate of the parameters, based on susceptibility measure-
ments, was made by Hansen et al. in 1975 [10]. In 1980, the CFPs were again determined via
magnetic susceptibility measurements by Beauvillain et al. [76]; however, Beauvillain et al.
make no reference to the work of Hansen er al. Optical spectroscopy was used to determine
the CFPs by Christensen, and by Gifeisman et al., in the late 1970s [77, 78]. Electron param-
agnetic resonance was used by Shakurov et al. to estimate the CFPs in 2005 [79]. Around the

same time, numerical estimates of the CFPs, based on neutron scattering data, were made by
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CFP (K) | Ref. [10] | Ref. [76] | Ref. [78] | Ref. [77] | Ref. [79] | Ref. [67] | Ref. [80]
BY —0.754 | —0.853 | —0.609 | —0.606 | —0.609 | —0.696 | —0.672
10°BY 4.94 5.55 3.25 3.75 3.75 4.06 3.58
10°B? 1.16 1.16 8.41 6.06 6.05 4.64 6.26
10%B3(C) | 5.26 5.44 4.29 4.16 3.15 4.18 4.07
10*B2(C) | 9.92 9.99 8.17 7.95 6.78 8.12 7.32
10%B§(S) | 0 0 0 0 2.72 0 0
10*B¢(S) | 1.96 1.37 0 0 4.14 1.14 1.98

Table 2.1: In this table, we list various estimates of the crystal field parameters of LiHoF,4
in units of Kelvin. References [10, 76] are based on the susceptibility measurements
of Hansen ef al. and Beauvillain et al., respectively. References [77, 78] are, respec-
tively, the optical light scattering experiments of Gifeisman et al. and Christensen.
Reference [79] contains the estimates based on Shakurov et al.’s EPR experiments.
In [67], we have the numerical estimates of Rgnnow et al., and in [80], we have the
estimates of Babkevich ef al. based on neutron scattering experiments.

Rgnnow et al. [67]. More recently, in 2015, neutron scattering was used by Babkevich et al.
to determine the CFPs [80]. In Table 2.1, we list these values of the CFPs. In this thesis, we
use the crystal field parameters of Rgnnow et al. [67] because, in the low temperature regime
that we will be primarily concerned with, they provide a good fit to the experimental phase di-
agram of LiHoF,. LiHoF, provides an arena for testing many aspects of fundamental physics,
as discussed in the introduction to this thesis, therefore it is crucial that these parameters are
determined with greater accuracy.

The antiferromagnetic exchange interaction has not been directly determined. An estimate
of its strength has been made by Rgnnow et al [67], based on inelastic neutron scattering
data. Using the crystal field parameters listed above, they find an exchange interaction of
Jun = 1.16mK provides a good fit to the experimental phase diagram, except in the vicinity of

the zero transverse field critical temperature (70 = 1.53K), that is, their fit is good when when
T,

gLuBBx

Bg (S) =0.87 x 107°K and J,, = 3.13mK they are able to obtain a better fit to the experimental

phase diagram near T = 1.53K; however, there are now significant discrepancies between

> 1, where T is the critical temperature in an applied transverse field By. By taking

the experimental and calculated phase diagram at intermediate temperatures of about 0.4K to
1.5K.

Another estimate of the exchange interaction was made by Tabei ef al., based on zero trans-
verse field Monte Carlo simulations [69]. The exchange interaction is used to tune the critical
temperature to the correct experimental value. These simulations neglect the effect of the

hyperfine interaction; however, they note that prior Monte Carlo simulations [64], which incor-
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porated the effect of the hyperfine interaction via a renormalization of the effective transverse
field, indicate that the effect of the hyperfine interaction is unimportant when the transverse
field is zero. We are skeptical of this result as a renormalization of the transverse field fails
to account for any stabilizing effect the longitudinal hyperfine interaction might have against
the disorder caused by fluctuations. Using the crystal field parameters of [67], Tabei et al.
find the exchange interaction to be J,,, = 3.91mK. The parameters in Tabei et al.’s work are
tuned to obtain the correct experimental value for the zero transverse field critical tempera-
ture; however, the tuned parameters fail to produce the experimental phase diagram away from
B, = 0. They suggest that magnetoelastic couplings, higher order multipolar interactions, or
anisotropic exchange, may be sources of the discrepancy [69].

In this thesis, we will use the crystal field parameters of [67], and take J,, = 1.16mK
unless otherwise noted. These parameters have been demonstrated to provide a good fit to the
experimental phase diagram in the low temperature regime.

The electronic energy levels in the crystal field are mixed and split by the applied transverse
magnetic field. In the absence of the applied field, the system has a degenerate ground state
separated from the first excited state by about 11K. The degenerate ground state is split by the
transverse field leading to the effective transverse Ising nature of the system. As the transverse
field is increased towards the quantum critical point, there is also significant mixing with the
higher lying levels that cannot be included perturbatively. In Figure 2.3, we plot the energy
levels of the electronic single ion Hamiltonian,

He =) V(i) = guin ) BuJy' (2.14)
l l

as a function of the transverse field. The inset shows the splitting of the lowest two energy
levels, relevant to the effective transverse field Ising Hamiltonian used to model the system,
and the next highest excited state. This higher lying state is separated from the lower lying
doublet by at least 10K.

Group theoretic considerations determine the general structure of the ground state doublet
to be a mixture of the odd electronic eigenstates. The applied transverse field breaks the sym-
metry of the ground state, and mixes even eigenstates of the J° operator into the ground state
Hamiltonian. The mixing of the eigenstates of the J* operator, J?|j) = j|j), in the ground state

and the first excited state of equation (2.14),

7
) = Y o)), (2.15)
j=—1

is illustrated in Figures 2.4 and 2.5.
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Energy Levels of the Single lon Electronic Hamiltonian

200 ¢
100 1
Q 30
> ol A
o
) 10
C
W 100 | Od 2 4 6 il
-200 .
0 1 2 3 4 5 6
B, (T)

Figure 2.3: In this figure, we show the energy levels of the crystal field component of the
LiHoF,; Hamiltonian (in Kelvin) as a function of an applied transverse field By (in
Tesla). The inset shows the lowest three energy levels with the ground state taken as
zero energy. We see that the second excited state is seperated from the low energy
doublet by a gap of over 10K.

The Hyperfine Interactions

The Ho’" ions in LiHoFy consist of a single nuclear isotype with nuclear spin I = % As
discussed by Mennenga et al. in their paper on the specific heat of LiHoF, [35], the nuclear

part of the Hamiltonian for a Ho>* ion may be written as
H, = AL - T+ guid - Hy + ). (2.16)

The first term, which we will refer to as the hyperfine interaction, is the most significant. It is
due primarily to the magnetic interaction between each holmium ion’s 4 f electron cloud and
its nucleus. The final two terms have been dropped from the LiHoF,; Hamiltonian given in
equation (2.6) because they are expected to be small. The second term includes any externally
applied field, or mean field (MF), due to the neighbouring holmium ions. It also includes nu-
clear dipole-dipole interactions between the holmium nucleus and neighbouring nuclear spins,

and Fermi contact interactions other than core polarization effects. Any core polarization ef-
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Mixing of Electronic Eigenstates
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Figure 2.4: In this figure, we show the mixing of the even electronic eignestates of the
J* operator by the crystal field as a function of an applied transverse field for the
ground state (solid line) and first excited state (dashed line) of the electronic com-
ponent of the single ion Hamiltonian for LiHoF4. Each «; corresponds to the elec-
tronic eigenstate such that J?|j) = j|j)

fects are included in the first term. The nuclear magneton is u, = 3.66 x 104K /T and the
nuclear g factor for holmium is g, =4.17 [81]. The final term is the nuclear electric quadrupole
interaction at the holmium nucleus. In addition, there will be hyperfine terms involving only
the lithium and fluorine nuclei .77, (fp,fu). The most significant parts of .77, (fp,fu) are the
transferred hyperfine interactions due to the Fermi contact interaction between the holmium
electrons, and the lithium and fluorine nuclei. We will discuss each of these terms in turn
below, beginning with the most significant, the hyperfine interaction. For a more detailed dis-
cussion of hyperfine interactions in rare earth atoms see the review by Bleaney [82]. Here we
provide a brief review of what we deem to be most significant.

The hyperfine interaction may be written as
Sy = Al-J = —gupnl - Hyy, (2.17)

where Fl4f is the magnetic field at the nucleus of a Ho>* ion due primarily to its 4f electron

cloud. We say primarily because we allow this term to include small corrections due to the
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Mixing of Electronic Eigenstates
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Figure 2.5: In this figure, we show the mixing of the odd electronic eignestates of the
J* operator by the crystal field as a function of an applied transverse field for the
ground state (solid line) and first excited state (dashed line) of the electronic com-
ponent of the single ion Hamiltonian for LiHoF,4. Each a; corresponds to the elec-
tronic eigenstate such that J¢| j) = j|j)

atom’s core electrons. The largest contribution to Hy r comes from the orbital angular momen-

tum of the 4f electrons, and is given by
Hp = —2up Y (r; )i = —2up(r )L, (2.18)
i

where we have assumed that each orbital has the same average radius to obtain the final ex-
pression. The next largest contribution is due to the dipolar field of the electron spins, and may

be written as

-,

Hy=2pp Y (r; *) 15 =35 7)7i) = 2up(r ) E[LL+1)S —3(L-S)L]. (2.19)

The final expression is obtained by using the Steven’s equivalent operator method, the details
of which are found in [73]. For Ho3" the numerical factor is éE= —ﬁ. The orbital and spin
angular momentum vectors precess rapidly around the (conserved) total angular momentum
vector J = L+ . Projecting onto J, we find the time averaged field felt by the nucleus to be
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given by

Hip = —2up(r) [i.f_g (L(L—i— 1)§-f—3(z-§)(zﬂ>] J(JL

T (2.20)

This expression is subject to several corrections, such as the Fermi contact interaction due to
the polarization of core s electrons. These corrections are discussed by Bleaney in [82], and
will not be discussed here. The hyperfine field H, 1 18 largest for Ho" and Er’* with fields
approaching 800 Tesla. This, in conjunction with with holmium’s large (relative to the other
rare earths elements) nuclear g factor, g, = 4.17, and large nuclear spin, I = %, lead to the
significant hyperfine coupling in LiHoF;.

We now consider the second term in equation (2.16), J7,,, = gn;,t,j . Fln, which we take to
be the energy of a holmium nuclear spin due to the field generated by all sources external to
the holmium ion itself. This term includes any externally applied magnetic field, as well as
the MF caused by the neighbouring holmium ions. It also includes the dipolar fields due to
the nuclear moments of neighbouring ions. All these interactions are suppressed by a factor
(or factors) of Z—];’ relative to the interaction of these fields with a holmium electronic spin, or
the dipole-dipole interaction between holmium electronic spins. This term may also include
Fermi contact interactions between the holmium nucleus and electrons belonging to neighbour-
ing ions. Spectroscopy experiments carried out by Magariio et al. on LiHo,Y|_,F4, where
most of the holmium has been replaced by non-magnetic yttrium, are presented in [9], and

spectroscopy experiments in pure LiHoF, are presented in [13]. They found a spacing between
17

10%G

the pure sample they found A = 39.8mK. This shows neighbouring holmium atoms in the pure

hyperfine resonance lines of A = 479G * g1 * Up = 40.2mK in the dilute sample, and in
sample have little impact on the spacing of the lines in the hyperfine spectrum. Assuming that
Fermi contact interactions with the lithium and fluorine electrons are small, we are justified in
dropping . = gn /.L,j . FI,, from the thermodynamic analysis of the LiHoF, Hamiltonian.

The most significant part of 7%, (7F,TL,-) is the transferred hyperfine interaction due to the
Fermi contact interaction between the holmium electrons and the lithium and fluorine nuclei.
NMR experiments carried out by Hansen and Nevald have determined these interactions [83].
They found that for fluorine, the transferred hyperfine interaction is of the same order of magni-
tude as the dipole-dipole coupling between the fluorine nuclear spin and the holmium electonic
spin. For lithium, the transferred hyperfine interaction is five times smaller than the lithium-
holmium dipolar coupling. These terms may be safely dropped when performing a thermody-
namic analysis of the LiHoF, Hamiltonian; however, we note that, as pointed out by Schechter
and Stamp [38], they may still have an impact on the relaxational dynamics, and decoherence,
in LiHoFj4.
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The final term in equation (2.16) is the nuclear electric quadrupole interaction J75. Re-
call that the energy of a charge distribution, ¢ = [ p(r)dF, placed in an electric field may be
expanded as [84]

Lo 1 . JE;
Huttipole = qV (0) — P-E(0) — gZQ”a—,f(O) Foee, (2.21)
ij i

where E = —VV is the electric field, and P and QV are, respectively, the dipole and quadrupole
moments of the charge distribution. We are interested in the charge distribution of each
holmium nucleus in the presence of the electric field created by its surroundings. The first
term corresponds to a constant shift in the ground state energy and may be ignored, and the
dipolar term is zero because the electric field is zero at the nucleus (otherwise the nucleus
would move). The final term, the quadrupolar term, may be non-zero because derivatives of
the electric field may be non-zero at the nucleus. In terms of equivalent spin operators, we may
write the quadrupolar operator as

0’ = /p(r)(?)r,-rj —r25,-j)d?: 9 §( i1j+1jli) —I(I+1)9;|, (2.22)

I12I—-1) (2

with Q = Q*. With an appropriate choice of axes V;; = d'EJ = 0 for any i # j, and, for a
system with axial symmetry about the z axis such that V,, = V,,, the quadrupolar interaction

will take the form
1
Hp = P[I> — §1(1+ 1)]. (2.23)

Such is the case in LiHoF4. The value of Q for a holmium atom is Q = 2.4 barns, which
is unremarkable when compared to the Q values of the neighbouring rare earth atoms in the
periodic table. Specific heat measurements have been used to find the value of P for LiHoF4 by
Mennenga et al. [35]. We note that in Mennenga et al. A = A%, where an effective g factor
of g = 13.5 has been introduced to account for the systems crystal field. They fit their data to
the Shottky anomaly in the specific heat due to the nuclear spins, and allow in their model a
contribution from the hyperfine interaction, and a nuclear quadrupole field. For the hyperfine
interaction they find A = 38.8mK, and for the nuclear electric quadrupole interaction they find
P =2mK, which is very close to the value for the free ion which they state is P = 1.7mK. This
indicates that the electric field gradient is due primarily to the 4 f electron cloud, and the effect
of the crystal electric field is relatively small. We will find, after performing the truncation
to obtain the low energy Hamiltonian, that the effective longitudinal hyperfine interaction is

enhanced to A; ~ 200mK, whereas the quadrupole coupling is left unchanged, so neglecting
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the quadrupole term introduces errors on the order of about 1% to the Hamiltonian. Errors of
the same order of magnitude are incurred when the transverse dipolar interactions are dropped
from the effective theory. In the remainder of this thesis, the nuclear quadrupole interaction

will be neglected, and we will take A = 39mK.

Domains in LiHoF4

In order to discuss domains in LiHoF,, we begin by discussing the local field felt by each
holmium ion inside the crystal. We follow closely the discussion of Mennenga et al. in [35].

The local field will be given by
- - 4 - oo o -
Nipe = ha + ?M +AgipM —N -M + AexM, (2.24)

where M is the magnetic moment per unit volume, which, for the sake of simplicity, we take
to be constant. This corresponds to assuming our sample is a uniformly magnetized ellipsoid,
in which case the demagnetizing field, to be discussed shortly, is uniform [85]. There is an
externally applied magnetic field ha, and hex = AexM is the field due to the exchange interaction.
The dipolar field is ﬁdip = 4{1\71 + Ad,.pz\? — N-M. The three terms in the dipolar field are,
respectively, the Lorentz local field due to the exclusion of the origin in the dipolar sums,
a contribution due strictly to the structure of the lattice, and the demagnetizing field, which
depends on the external shape of the sample [8, 35]. The dipolar interaction will be dealt with
in detail in Chapter 3.

From Maxwell’s equations, we know the total magnetostatic energy of our sample will be

given by
E— —%/M%CP?, (2.25)

where the integral is over the volume of our sample, and h=h,—N-M is the macroscopic field
given by Maxwell’s equations. In the case of a uniformly magnetized ellipsoid considered so
far, the integrand is constant and we simply have E = —%VM -h. In the ferromagnetic phase
of the system, the analysis is no longer as simple. The system may arrange itself into domains
in order to minimize its total energy, in which case the macroscopic field and magnetization
will be non-homogenous.

As discussed in [35], there is experimental evidence indicating that in the ferromagnetic

phase of LiHoFy, in a field applied along the easy axis of the crystal, the macroscopic average
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field,
I | .
== / W = I — N°MF, (2.26)
Vv

will be zero up to the saturation value of the magnetization, i.e. h% = N*M?, where M? =
M3 + M? is now the difference between the contributions of the spins in the up and down
domains. In zero applied field, we are led to the conclusion that the system forms long needle
like domains, in which case the demagnetization factor for each domain is N* = 0, or that the
net magnetization of the system is zero (or both!). As discussed by Tabei et al. [69], according
to Griffiths’ theorem [86] the magnetization of the sample must be zero in the thermodynamic
limit. Griffiths’ theorem states that spins on a lattice with magnetic dipole-dipole interactions,
exchange, and anisotropy energy, possess a well defined bulk free energy, independent of sam-
ple shape, in the thermodynamic limit, in the absence of an externally applied magnetic field.
This implies the net magnetization of the system must be zero, otherwise, magnetic moments
on the surface of the sample would couple to the dipolar moments in the sample, causing shape
dependence [35]. Mennenga et al. note that their specific heat measurements in zero applied
field are independent of sample shape, which can also be understood as a result of Griffiths’
theorem. We note that because Griffiths’ theorem is only applicable in the thermodynamic
limit, the question remains as to how large a system must be in order to have zero net magne-
tization, and, if there are impurities pinning domain walls, how long it will take the system to
reach a state of zero magnetization.

Mennenga et al. [35] provide an interesting argument for the vanishing of the macroscopic
average field, /7, that we reproduce here. They begin by defining the measured susceptibility
M? = x%h%, and the internal susceptibility M? = Lo h%, where the internal susceptibility is
the response of the medium to the macroscopic average field. As the domain structure is
macroscopic, the field to which it will respond is A%, so X, measures the susceptibility of the
domains. We find that the measured susceptibility may be written as

M= 1 1

Z
- = _ . (2.27)
Xa hé NZ—f-i NZ—’_(%med) !

In order for the macroscopic average field to vanish in the ferromagnetic phase of the system,

we must have }3* = which implies the internal susceptibility of the medium must dlverge

NZ E
This means that the domain walls must have high mobility. As Mennenga et al. put it [35] ,

equilibrium, we have % = 0. A change in /% will produce a non-zero 4%; the domain structure
will immediately readjust itself so as to keep 4% = 0. We note that this argument was presented

in an earlier paper of Cooke et al. [11], in which they verify that y:* = N in the ferromagnetic
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phase of LiHoF,. They also note that no hysteresis effects are present in LiHoF4, which is
another effect of the mobile domain walls.

Experimental evidence for the domain structure of LiHoF,; from optical light scattering
is presented in [8], where they found evidence of needle like domains with the extension of
one domain perpendicular to the easy axis of the crystal being about Sum, at a temperature
of 0.927; (T, = 1.54K), in cylindrical samples with the z-axis parallel to the easy axis of the
material. In addition, Cooke et al. argue in favour of the formation of needle like domains
based on energy considerations [11].

Further evidence for the formation of needle shaped domains in LiHoF, has been found
by Kjgnsberg and Girvin using Monte Carlo simulations [87]. Considering a spherical sample
consisting of 215 dipoles, they see evidence of needle shaped domains. Domains are also
considered by Biltmo and Henelius in [88]. Based on energy considerations in a finite cylinder
with non-zero demagnetization factor, they predict the formation of parallel sheet domains in
the system’s ground state. Unfortunately, there is no experimental evidence to support this
prediction, so, in this thesis, we will consider a long thin uniformly magnetized cylinder with
zero demagnetization field, or a system divided into needle like domains, as has been observved
near the zero transverse field phase transition [8].

As noted by Chakraborty ef al. in [64], in LiHoF4, at low temperatures, the transverse
dipolar interaction is negligible compared to the longitudinal dipolar interaction. This means
a spin pointing in a direction transverse to the easy axis is unaware of the orientation of its
neighbours. Hence, an applied transverse field polarizes spins uniformly in the x direction,
or, as Chakraborty et al. put it [64], the magnetization M* is unaware of the domain structure
formation in LiHoF4.

Within a single domain away from the domain wall, where the macroscopic field is 4* = 0,

the local field acting on a spin will be

- 41 -
hioe = (7 + Adip + lex> M. (2.28)
The anisotropy energy in LiHoF;, is large, leading to domain walls with a very narrow width;
hence, most of the spins will experience the same local field. In what follows, we will consider
a long thin cylindrical sample with zero demagnetizing field. Such a sample should consist of a
single domain. It also reflects the local field felt by a spin in a sample of LiHoF, that is divided

into needle shaped domains, as discussed above.
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The Effective Low Temperature Hamiltonian

We now derive an effective low temperature Hamiltonian for the LiHoF, system. Following

[64], we diagonalize the electronic part of the single ion Hamiltonian I-Ie = UH,U", with
He =Y Vc(Ji)) — grus Y BuJy. (2.29)
i i

We apply the same rotation to the spin operators JH =UJ*UT, and truncate the operators down

to the two by two subspace that mixes the lower two eigenstates of H,

JH=Cu(B)+ Y, Cuv(B)T". (2.30)
V=X,y,Z

The lower two electronic eigenstates of H, are well separated from the rest of the electronic
eigenstates as illustrated in Figure 2.3. The hyperfine interaction, and the interaction energy be-
tween holmium ions, is too weak to cause significant mixing with the higher lying eigenstates,
which justifies the truncation procedure. We apply a second rotation in order to diagonalize the
J* operator in the two by two subspace so that J* = C,,7°. In terms of the two lowest eigenstates
of H,, |a) and |B), our basis is | T) = \%Ha} +expif|B)]and ||) = %HO‘) —expif|B)], where
the phase is fixed such that the coefficient of the lowest eigenstate |a) is real and positive. We
note that, contrary to the recent claim made in [89], the Ising nature of the electronic degrees
of freedom is maintained in an applied transverse field, with the relevant Ising eigenstates, | 1)
and | |), being a mixture of all the J* eigenstates, given in Figures 2.4 and 2.5. In Figure 2.6,
we plot the non-zero matrix elements of the effective spin half operators as a function of the

transverse field.
In terms of the effective spin operators, the Hamiltonian H, may be written in the two by

two subspace as

H,~) Ecy.i(Bx ——A Z (2.31)
i i
2
——JD ZDfJZTfTJZ —J nCo( <Z> T
ij

where Ecy, is the average of the two lowest electronic energy levels, and A is their difference.
The terms neglected in this approximation either vanish due to symmetry considerations, or
they are significantly smaller (~ 1%) than the terms given in equation (2.31). For a discussion
of these terms see [69]. The Ising nature of the system is apparent in the truncated Hamiltonian.

We now reintroduce the nuclear spins by truncating the hyperfine interaction, Hy,, = A Ziii .
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Matrix Elements of the Effective Spin Operators
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Figure 2.6: In the figures above, we plot the non-zero matrix elements of the effective
spin half operators, J* = Cy(Bx) + Xy—y . Cuv(Bx)t", for the truncated LiHoF,
Hamiltonian. The plot on the left shows the larger matrix elements, with the upper
most matrix element being C,,. Below C,;, in descending order, we have Cy, Cy,
and Cy,. The matrix elements in the right hand plot are much smaller than those on
the left. In descending order, we have Cy, Cyy, and Cy,.

J;, down to the lowest two electronic levels (we replace J; with the effective spin half operator

for the two by two subspace). The result for the hyperfine interaction is
Hyyp =AC Y IF+AC Y I (2.32)
i i

+AC ) TIF+AC: Y Tl +AC,. Y T'L
i i i

Cxx+cyy+i(cyx_cxy)21ﬂ.— _I_Acxﬁ'cyy Cyx — Cyy) ZT I
1 l

A
+ 4

i

+Acxx —Cyy +i(Cyx + Cxy) Yol +Acxx -Gy — (ny +Cy) YL

4 4

i i

Dropping the energy shift Ecys, and keeping only nonzero terms in the hyperfine interaction,
we find our effective low temperature Hamiltonian to be (suppressing the field dependence of

our operators)

A 1
Hepp=—7 fo — 5InC; Zijr, T+ J nC> <Z> T (2.33)
Ly

+ZA T+ A, Z’L’ZIZ—I—ALZT+I +A Zr L

+A++ZT{‘_I;—+A +ZT I_
i
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where

A, = (AC,,AC,,0) (2.34)
and
A, =AC,, (2.35)
AL = 4Gt Gyt ;‘(ny —Cy)
A, = ACxx -Gy _;(ny +Cy)

Incorporating the nuclear spins into the model by applying the trunctation procedure for the
electronic spins to the hyperfine interaction was suggested by Chakraborty et al. in [64]; how-
ever, it was never carried out in their work. This is the first time such a procedure has been
used to analyze LiHoF;.

In Figure 2.7, we show the effective transverse field acting on the electronic spins as a
function of the physical transverse field B, (in Tesla). The inset shows the next two largest
parameters in the effective Hamiltonian, the transverse field acting directly on the nuclear spins,
and the longitudinal hyperfine interaction. We see that the effective transverse field acting on
the nuclear spins is rather large, and should not be neglected. The remaining parameters in our
model, the magnitudes of which are illustrated in Figure 2.8, are significantly smaller.

The important point to take from the low energy effective Hamiltonian is the anisotropy of
the hyperfine interaction, and the large effective transverse magnetic field acting directly on the
nuclear spins. We see that the effective longitudinal hyperfine interaction is about A, = 200mK,
and the transverse component, A | , is over ten times smaller. As for the electronic dipole-dipole
interaction, the source of the anisotropy is the deformation of the electronic 4 f orbitals due
to the crystal electric field. The effective transverse field acting on the nuclear spins, A}, is
roughly 100mK when the real transverse field, By, is between 3T and 6T. It is this effective
transverse field that is responsible for the dominant mixing of the nuclear spins, rather than
the transverse hyperfine interaction. This effective field is a result of the strong hyperfine
interaction in LiHoF,, viz., the physical transverse field shifts the electronic 4 f orbitals leading
a significant effective field acting directly on the nuclear spins via the hyperfine coupling. The
dominant longitudinal hyperfine interaction is well known, and was considered by Mennenga
et al. in their specific heat measurements in 1983 [35]; however, the large effective field acting

on the nuclear spins has not been previously noted.
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Magnitude of Effective Parameters
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Figure 2.7: In this figure, we plot the effective transverse field, A (in Kelvin), acting on
the effective Ising spins in LiHoFy, as a function of the physical transverse field B,
(in Tesla). The inset shows the next largest parameters in the LiHoF, Hamiltonian,
these being the effective transverse field acting directly on the nuclear spins, Ay,
and the longitudinal hyperfine coupling, A..

Summary

In this chapter, we discussed the rare earth insulating magnet LiHoF,, and its effective low
temperature Hamiltonian. At low temperatures, this system is a physical realization of the
dipolar coupled Ising model. In Section 2.1, we introduced the Hamiltonian thought to model
the material and illustrated its crystal structure. The crystal field, which leads to the Ising
anisotropy of the system, and the exchange interaction, are then discussed in Section 2.1.1. In
LiHoF,, each electronic degree of freedom is strongly coupled to a nuclear spin. The physics of
this hyperfine interaction is discussed in Section 2.1.2. Before turning to the low temperature
effective Hamiltonian, we discussed domain formation in LiHoF, in Section 2.1.3. We relayed
the fact that the material forms needle like domains (near its it critical point at least), and that
the domain walls have high mobility, dominating the susceptibility in the ordered phase.

In Section 2.2, we truncated the Hamiltonian obtaining a low temperature effective model

that fully incorporates the nuclear degrees of freedom. The nuclear spins have not been in-
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Figure 2.8: In this figure, we plot the magnitudes of the transverse hyperfine parame-
ters, A | being the uppermost line, and A ; being the middle line, in the effective
low temperature Hamiltonian for LiHoF, as a function the applied transverse mag-
netic field B,. The lowest line is the stray field, A}, acting on the nuclear spins in
the direction transverse to the easy axis and the direction of the applied transverse
field. All these parameters are about an order of magnitude smaller than the other
parameters in the model in the vicinity of the critical transverse field By = 4.97'.

cluded as part of the truncation procedure in previous work. We saw that this effective Hamil-
tonian is essentially the Ising model, with a hyperfine interaction that is anisotropic, and an
effective transverse magnetic field acting on the nuclear spins with a magnitude that is com-
parable to that of the longitudinal hyperfine interaction. Although the effective anisotropic
hyperfine interaction is well known, the effective transverse field acting on the nuclear spins
has not been pointed out previously. It is this field that is primarily responsible for the mixing

of the nuclear degrees of freedom at low temperatures.
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Chapter 3
Dipolar Interaction

In LiHoF,, one must take into consideration the long range dipolar interaction between spins.
Recall that in the low temperature effective hamiltonian for LiHoF, the dipolar component is
given by

1
Hyip = —EJDCZZZ(BX) Y DETi, (3.1)

i#]j

where 2—[3’ = 7mK, with a = 5.175A being the transverse lattice spacing. The effective spin half
operator is given by J* = C,.(By) 1%, with C_;(By) plotted in Figure 2.6. The spatial dependence

of the longitudinal component of the dipolar interaction strength is given by

2

pe— L (% 3.2

0 r.3. r.z. ’ ( ’ )
tj tj

where r;; = |F; —7}|, and z;; = z; — 2.

An analysis of the long range dipolar interaction, taking into account the underlying crystal
structure of LiHoF4, is an essential part of understanding the system. This analysis has not been
presented explicitly in the literature, so we do so here. We analyze the longitudinal component
of the dipolar interaction in Fourier space, performing a dipole wave sum to obtain each Fourier
component of the dipolar interaction.

Dipole wave sums were calculated in the continuum limit by Holstein and Primakoff, in
1940, in a paper in which second quantization was used to derive the spin wave spectrum of
a dipole-dipole coupled Heisenberg ferromagnet [90]. Working in the continuum limit corre-
sponds to assuming the underlying lattice structure of the sample is simple cubic, and fails to
produce the correct result for crystals with a more complicated lattice. Furthermore, Holstein

and Primakoff neglect any boundary effects; boundary effects are important for momenta with
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wavelengths on the order of the system size, and have a significant impact on the zero momen-
tum summation. In Section 3.1, we reproduce Holstein and Primakoff’s results for a spherical
sample, and incorporate the effects of the system’s boundary. We then repeat the calculation
for a long, thin, finite cylinder, which corresponds to the dipolar field felt by a spin within
a needle shaped domain. In Section 3.2, we perform the discrete dipole wave sum for small
momenta by brute force numerically, and compare with the continuum results.

Dipole wave sums in primitive cubic lattices (simple cubic, body centered cubic, and face
centered cubic) were carried out by Cohen and Keffer in a 1955 paper [91]. Cohen and Keffer
consider boundary effects in their work, and a key result is that the system’s boundary is only
significant for momenta such that kR < 10, with R being the system size. They also find that
the dipole wave sum is independent of position unless kR < 10, with the exception of the
point at k = 0. At k = 0, the shaped dependent dipole wave sum is completely independent
of the choice of origin, except for origins immediately next to the sample surface. The results
of Cohen and Keffer were obtained using the Ewald summation method, which we apply to
LiHoF, in Section 3.3.

The Ewald summation method divides a sum into a short range part, and a long range part.
Performing the long range part of the summation in Fourier space leads to rapid convergence
of what might otherwise be a slowly converging series. In LiHoF,, the Ewald summation is
complicated by the underlying lattice. Ewald summation for a lattice with a basis (the set
of atoms associated with each lattice point) has been considered by Bowden and Clark [92].
Bowden and Clark sum over a set of sublattices to account for each atom in the crystal. Rather
than sum over sublattices, we prefer to introduce a geometric factor to account for the basis.
The calculation is essentially the same. In Section 3.3, we perform the dipole wave sum using
Ewald summation in a spherical sample of LiHoF4. In Section 3.3.1, we redo the calculation
in a long cylindrical sample of LiHoF, relevant to a system with needle like domains. No such

calculation appears to exist in the literature.
Dipolar Interaction in the Continuum Limit

We begin by calculating the Fourier transform of the dipolar interaction in the continuum limit.
This calculation follows the work published in 1940 by Holstein and Primakoff [90]. The
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Fourier transform of the dipolar interaction is given by

Dy =~ Y Dyjelti) = 1 y L(3 G )elkri (3.3)
- tj - 3 2 :
N iZ; NiZiri T
N 1 372 2 o
_ (= lk~rd3—»‘
V Jrzo 13 ( r2 Je d

We exclude the origin (fr7é0) from the integral on the final line because the summation excludes
the term i = j. Clearly, the dipole wave sum on a discrete lattice will depend on the structure
of the underlying lattice. In the continuum limit, any information regarding the structure of the
lattice is lost. Explicit calculations show that the continuum result is equivalent to performing
the discrete summation over a simple cubic lattice [91]. This may be understood as a reflection
of the fact that the simple cubic lattice contains a homogeneous distribution of points. In,
for example, a tetragonal crystal, one of the spatial directions is stretched. This leads to the
discrepancy between the lattice summation over a tetragonal crystal and the continuum result.

We may rewrite equation (3.3) as

N N 1 372
Dy==-DO)+= [ =(1-=)(1—-e*)a*F 4
N Nk, @ [1 7= NTz
—-D YR Y = ik g3 Y A 1— ik-7?
v (0)+ v ok 3¢ d r+V L3( ™) azdxdy,

where an integration by parts is performed on the z component of the integral, and D(0) =
2 N . .

/. £0 r%(% — 1)d>7. The above manipulations separate the zero wavevector component of the

sum, which contains the divergence at the origin, from the rest.

The zero wavevector component of the sum is given by

N N 1 322, 4
—D(0) = —— —(1 -7 3.5
N [ z N [ z

== inr—sz-ﬁdZ—V/sz-ﬁdz,

where in denotes a small sphere centered at the origin, and out denotes the outer surface of the
specimen. We exclude the origin and use Gauss’ theorem to obtain the second line from the
first. The first term is a surface integral, oriented towards the origin, over a small sphere, which
gives us the Lorentz local field. The second term is an integral over the outer surface of the

sample, oriented towards infinity, which gives us the demagnetizing field

N Z

Hp = —— — 2. ndX. 3.6
D % oqu3Z n (3.6)
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Ignoring the demagnetizing field for the moment, we find the Lorentz local field to be

500

N
-/ r%z-ﬁdz (3.7)

2 N4
V/ / sin(0)cos* (60 )d6d¢— i

Given a spherical sample of a simple cubic crystal, the demagnetizing field is equal and oppo-

in

site to the Lorentz local field, and the zero wavevector sum vanishes. With a more complicated
underlying lattice, or a more complicated sample shape, the contributions will not cancel. In
a uniformly magnetized ellipsoid, the demagnetizing field is constant; however, the demagne-
tizing field of a non-ellipsoidal sample may be a rather complicated function of the specimen’s
shape that likely needs to be worked out numerically [85]. We will deal with lattices more
complicated than simple cubic later in Sections 3.2 and 3.3.

We now turn to the momentum dependent part of the dipole wave sum. We consider a
spherically shaped sample with radius R, and perform the first integral in equation (3.4) in
spherical coordinates
Nk, 0 1 73, 4nNk, d [Rsin(kr) i

ik-7? 33-2
S T R LS 7
v okl RS YT TV ke k2

(3.8)

In Section 3.1.2, we will consider a long cylindrical sample, relevant to materials that form

needle like domains. We now perform the % derivative and integrate to get
Z

47N k2

I = _TE [1 - JO(kR)} (3.9)

where jj is a spherical Bessel function of the first kind. In an infinite sample jo(kR) — 0, and
we’re left with only the term to the left of the square brackets.
The boundary term in equation (3.4) from the integration by parts can be evaluated as

follows (assuming a spherical sample)

N Z T
L=— —(1—=¢e"" dxd 3.10
2 V/[r3( ¢ )]az e G109

R2—y
ik
VR3// _— 2[ ¢*LTL cos (k,\/ R% — r2) | dxdy
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where ¥, = (x,y) and r = || |. In polar coordinates, the integral becomes

2 .
L= VR3/ / /R2_ 2|1 rz{ _ eikireosd oo (kZ\/RZ—rZ)]drdQ (3.11)
= g47r/ x? [1 —Jo(k R\ 1—x2)cos (kZRx)} dx,
0

where Jy(x) is a Bessel function of the first kind. In the limit of infinite sample size (k, R > 1),
we find

4
12:5’—”—5’47: 1 —y2Jo(k Ry) cos (keR\/1T—y2)dy (3.12)
[y Y

Numerical integration indicates the integral on the right vanishes as we take the limit of an
infinite sized system. This is expected because as R — oo, Jy and the cosine become rapidly
varying functions that average to zero.

Our final result, for a spherical sample with cubic symmetry in the limit of infinite sample
size, iS
+ Hp k=0

4
3
Dk: k2
T+ Hp +N4ﬂ<1—3k—g) k#0

<|2 <I2

Recall that in a spherical sample the Lorentz local field and the demagnetizing field are equal
and opposite and will sum to zero. We leave them in the expressions above as a reminder
that they may not cancel in a system with a more complicated shape, or a more complicated
underlying lattice. In such a sample, the zero frequency dipole wave sum is given by Dy =

%’ %” + ldip + Hp, where 7Ld,-p accounts for the lattice structure. Note that in the limit kK — 0,

2
the term ’;—g can take on any value in the interval [0, 1]. This ambiguity is removed when we

take into consideration corrections due to the finite size of the spherical sample.

Finite Sized Spherical Sample

We now consider the dipole wave sum for a finite sized spherical sample in the continuum limit.
This calculation is performed in the 1955 work of Cohen and Keffer [91], in which they perform
dipole wave sums for primitive cubic lattices taking into account finite size effects. Cohen and
Keffer find that boundary effects are negligible outside the region kR < 10. For momenta
inside this region, the dipole wave sum will have strong position and shape dependence, except
at k= 0. At k = 0, the dipole wave sum is independent of the choice of origin; however, it will
still be dependent on the shape of the sample.

The boundary contributes three additional terms to the dipolar sum, 0Dy = Hp + 8D% +
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8D,§. The first term, which stems from the zero wavevector sum, is the demagnetization field

N zZ . N4rn
oo N[ 2,55  NAm 3.13
p=—y | B V3 (3.13)

In a spherical sample with cubic symmetry, this is equal and opposite to the Lorentz local field
given by equation (3.7). The second term comes from the boundary of the integral in equation

(3.9). We get an additional contribution to the dipole sum of
oD? = V_Z io(kR). (3.14)

In the limit kR < 1, the Bessel function may be approximated as jo(kR) ~ 1 — %(kR)z, and

_4mN K N2rm
I 1 — jo(kR k.R 3.15
= [ |~ T R a.15
The third boundary term comes from (3.11), which we consider in the small £ limit, where
k| R)? k.Rx)?
Jo(k R\ 1—x2) %1—( L4 ) (1—x%) cos (k,Rx) %1—%. (3.16)
We find
3 N 'y
oD} = —ax / ok, R/ 1—x2) cos (k.Rx)dx (3.17)
0
N 1 2 2
N (RRP(RR?]
|% 3 10 30
This gives us
L Nan (kR)2+(kZR)2 (3.18)
2TV 10 5 ] '

which leads to the following expression for the dipole wave sum at small wavevectors (A > R)

in a spherical sample with simple cubic symmetry

Dk:——+HD+———[k —2i2]. (3.19)

In a spherical sample, the first two terms cancel, but we leave them in as a reminder that there
may be a zero frequency contribution to the sum for other sample shapes, or with an underlying
lattice that is not simple cubic. In a ferromagnet, a system will order at a wavevector such that

Dy is a maximum. From the above expression, we see that it is energetically favourable for the
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system to order at k = k| # 0. It is energetically favourable for a spherically sample to order
at wavevectors slightly away from zero.

In a sample that is large enough, the system will rearrange itself, forming domains, in
order to minimize its free energy. In such a system, it no longer makes sense to consider the
shape of the sample, rather, it is the shape of the domains that is important. Stray fields from
neighbouring domains are negligible because the system forms domains in order to eliminate
these fields. In Section 3.1.2, we turn to a long thin cylindrical sample, consistent with a system

that forms needle like domains.

Finite Sized Cylindrical Sample

We now consider the dipole wave sum, in the continuum limit, for a long thin cylindrical
sample. This sample shape has been considered by Cohen and Keffer [91]; however, they
did not publish their results. The expansion in plane waves presented here is straightforward;
however, an expansion in cylindrical waves may prove useful for obtaining analytic results. We
leave the cylindrical wave calculation as a subject of future work. The calculation most likely
exists elsewhere in the literature, but the time required to track it down far exceeds the time
required to carry out the calculation.

We begin with the expression

N Nk. 9
D= Do R 371 / (1— )| dxdy. 3.20
(=3O + 2 [ Ly )| axty. 620)

In a long thin cylinder, magnetized along its longitudinal axis, the demagnetizing field is ap-
proximately zero. This is because the magnetic surface charge (unpaired dipoles) lie at the top
and the bottom of the cylinder. As the length of the cylinder is increased, the interaction energy

of these dipoles goes to zero [85]. This means
—D(0)=——. (3.21)

We perform the first integral in cylindrical coordinates

Nk, 0
V8k

:N_kZ d / /271'-/ szrcosﬂeikzzdrdeZ
V Ok, r2+Z

_ Nark, Jo(k
_ T // rzo ¢r3 'n(kzz)drdz,
(r2+z%)2

I = zk rd3—» (3_22)
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where, in the final line, we have performed the angular integral and reduced the z domain to
[0, /). In the long wavelength limit, k,h < 1 and k| R < 1, we find

_ Nénk;
/ / drdz (3.23)
~ N2mk? h+ (R:+h2)3
— [hz h(R2+h2)% +R21n(¥)].
Assuming a long thin cylinder, we find
N ,[R*, (2h\ R?
I =~ —V27t(kzh) [Fln (E) 52 +-- } . (3.24)
For the second integral we have
N Z T
L=~ [|5(1-€*)| dxd 3.25
2 V/[r3( ¢ )szy (32

R hr ik | rcos@
:-/ / — = |2— 2617080 cos (k.h) | drd
\% 2+h2)§

= —47rh/ — {1 —Jo(kyr)cos (kzh)} dr
+h2 2

Expanding in the long wavelength limit we find

N [K: [ R*+21? k2h* (1 1
L~ —4x h[ <+—l—2h) + = (———]>}. (3.26)
14 4 \(R24h2)2 2 \h (R24+n2)z
For a long thin cylinder, R < h, the expression becomes
N R N R?
b~ S 2mkih? s — S 2mk R 3.27
Vv 2h? V 4h? + (3:27)
The dipole sum is then given by
D N N B (Y R Ny e B (3.28)
Cvias v R \R) R2] v 4h2 '

Recall that for a long thin cylinder we have Hp ~ 0. We see that in a cylindrical sample, the
quadratic term will depend on the aspect ratio, with the longitudinal momentum component
becoming more dominant as the length of the cylinder is increased. Unlike the spherical sam-
ple, in the case of a long thin cylinder, we see that Dy has a maximum at kK = 0. Hence, a long

thin cylindrical sample will order at zero wavevector.
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Direct Summation of the Dipolar Interaction in LiHoF4

In this section, we resort to direct summation to obtain the dipole wave sums in LiHoF,. This
summation converges at a reasonable rate in the long wavelength limit kR < 1; however, it
takes an unreasonably long time to converge for momenta belonging to the rest of the Brillouin
zone. In Section 3.3, we will perform perform the summation over the entire Brillouin zone
using the Ewald summation method. The work here, which is valid at small momenta, can be
used to verify the Ewald summation results.

We will consider the cases of a spherical sample and a long cylindrical sample, or needle
shaped domain. The summations are complicated by the fact that the underlying lattice of the
system is not simple cubic. We will sum over four sublattices to account for each atom in the

LiHoF, crystal. The dipolar sum is given by

D = %Z Dy ) = ¥ (L - ol (3.29)
i#] o' T

where 7; = 7; —7;. The positive and negative components of the dipole wave sums are not
independent, they are related by D%Z = (DZ_Z%)* Upon summation over the Brillouin zone, the
positive and negative momentum components of the imaginary part of the dipole wave sum
will cancel, and may be neglected from the subsequent analysis. For the real component, we

have Re [D%Z] =Re [DZ_Z%]; hence, all terms odd in k will vanish.
Note that D;; is a function of an atom’s distance from the origin. We will group the terms
in the sum accordingly. We divide the sum into four parts, D%Z = D,l( + D% + Dz + D}, where

the four terms correspond to the following atoms:

1 1 1
—»1_ _’\2_ 1 1 1
g —(ma,na,pc) T —(m+2,n+2’p_|-2)
1 1 1 1
>3 3
r Z(im,i(n+§),p+z) and 7 :(i(n+§)’im’_p_1)
A= (Emt ) Enp+ ) and F=(Endmt ) —p-7). (3.30)

We introduce

1 3(pe)?
[(m2 +n2)a? + (pc)2]3 L(m? +n?)a® + (pc)?

D(m,n,p) = —1 (3.31)

for notational compactness.

First, we consider ?ll = (ma,na, pc), and, to avoid overcounting lattice sites, we treat the
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axes, planes, and bulk of the sample separately. Along the axes we find

I
s

D} |axes [ cos (kyma) + cos (kyma) | 2D(m,0,0) + Z cos (k;pc)D(0,0, p) (3.32)

3
I

Mx

[4D(m,0,0) — k% (ma)*D(m,0,0)] Z [2D(0,0, p) — k2(pc)*D(0,0, p)],

3
L

where ki =k + kg. We are careful to distinguish between the summation along the trans-
verse axes and the summation along the easy axis, as these terms will contribute differently

depending on whether we are considering a sphere or a cylinder. Along the planes we find

[

D,1€|p1alnes = Z 4cos (kyma) cos (kyna)D(m,n,0) (3.33)

mn=1

+ Z [ cos (kyma) cos (k. pc) + cos (kyma) cos (k.pc)|4D(m., 0, p)
m,p=1

~ i [4D(m,n,0)—Zki(ma)zD(m,n,O)}

mn=1

+ i [SD(m,O,p)—Zki(ma)zD(m,O,p)—4k§(pc)2D(m,0,p)],

m,p=1
and in the bulk we find
D} |ouik = Z 8 cos (kyma) cos (kyna) cos (k. pc)D(m,n, p) (3.34)
m,n,p=1

~ Z [SD(m,n,p)—4ki(ma)2D(m,n,p)—4k12(pc)2D(m,n,p)].
m,n,p=1

For compactness, we now introduce, for example, m +% =my, Or p +% = ps.
2

atoms at ?,2 =(m 1, Py ), we only need to consider the bulk. We find

Z 8c0s<xm1a)cos <kyn1a)cos (kZPLC)D(ml,nl,pl) (3.35)
mon,p= 0 2 2 2 2 2

~ Z {SD(mé,n;,p) 4kLm1a2D(m1 n1,p1) 4k22p2lc2D(m%,n%,p%).
m,n,p=0 2

Next, we consider the atoms at 7,> = (£m, j:n%,p%) and 7> = (j:n%,j:m, —p%). We must
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consider the planes and the bulk of the sample separately. In the planes, where m = 0, we find

D,%|p1anes = Z 2 [cos (kxn%a) exp (— ikzpic) +cos (kyn%a> exp (ikzp}‘c)]D(O,n;,pi)

n,p=0
(3.36)

o5}

~ Z [4D(0,n1,p1)—kin21a2D(0n
27 4 2 ’
n,p=0

)

1:P1
2 1

0= 2k2p1c2D(0 nl,pl)}

and in the bulk we have

Dl?;’bulk = Z 4 [cos (kxma> cos (I@n;a) exp (ikzpic) (3.37)

m=1
+ cos (kxn;a) cos (kyma> exp (— ikzp}lc)]D(m,n;,p}‘)

n,p=0
) —4ki [mz—#n%]azD(m,n%,p}‘) —4k§p2lc2D(m,n%,p%) )
2 i

Q
s
o0
S
3

s

>

Finally, we consider the atoms at 7,* = (:i:m%,:l:n,p%) and 7% = (&n, :I:m%, —p%). Along
the axis, where n = 0, we find

Dilptanes = Y, 2 [cos (kxméa) exp (ikzp3c> (3.38)

m,p=0

~ Y {4D(m%,0,p3) kLmlazD(m1 Ops) 2k2p%c2D(m%,0,p%) ,
m,p=0 4

and in the bulk we have

Dz‘bulk = Z 4 [cos <kxméa> oS (k na) exp <lk D3 c) (3.39)

n=1
+cos (kxl’l(l> COS ( ym1a> exXp <_lkzp3c>:|D(m;7n7pi)

m,p=0
3
{SD(ml nps) 4k2 {n +m1} m%,n,p%)—4k§p§c2D(m%,n,p%) )
i

0

Q
s

n
m,

3
Il

We have divided the dipole wave sum into summations over four sublattices, and then
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proceeded to expand the result in the limit kR < 1. The result may be divided into three parts,

L (k,R)? 4+ 2

X

Rz : (k.h)?, (3.40)

representing the zero wavevector contribution, the transverse contribution, and the longitudinal
contribution, respectively. We introduce the radial system size R, and the longitudinal system
size h, to emphasize that the small parameter we are expanding in is kR, or kh. Collecting

together like terms in the dipole wave summation we find

D0—4ZDmOO+ZZDOOp+4ZDmnO) (3.41)
p=1 m,n=1

+4 Z [ZD my,0 pl)—I—D(O I’I’L1,p1)+D(m1 0 ps)}
m,p=0

+8mr§_o |:D(m17nlapl)+D(mé7né7p;)+D<mlunéap}t>+D(m£7n17p‘31):|

(o) [

—Dy, = Z (ma)*D(m,0,0) +2 Z (ma)*D(m,n,0)

m=1 m,n=1

N2
2 1\
+2 Z [ a)“D(my,0, p1)+(m+2) a (D(O,mivp}‘)JrD(m;,O,Pg))]

m,p=0

o ~
+4 ), {((erl)a)zD(ml,nl,P1)+(m+§) azD(m%,n%,P%)

m,n,p=0
2 1 2
- 2

—Dy, = i(pc)zD(0,0,p)-l-Z i {2((P+1)C)ZD(m1,0,p1)
p=1 m,p=0

+(<p—|— %)c) 2D(0,m;,pﬁ)+((p+ %) C) zD(m;,O,P;‘)}

1 2
+4 Z {PJrl 2D(m1,n1>P1)+<(P+§>C) D(my,ni,pi)+

m,n,p=0
1 \? 3\ \?2
+((P+Z>C) D(m1,né,pi)+((p+z)6) D(méﬂlhpi)}

In a spherical sample (R = h) we find D a® = 3.205, where a = 5.175A is the transverse
unit cell length. Recall that in the continuum limit the zero momentum dipole wave sum is zero.
The value obtained here is due strictly to the underlying lattice. We find Dy *a> = < Adip» with

Agip = 1.54. The transverse and longitudinal components of the dipole sum converge much
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slower than the zero frequency contribution. If we take the system size to be R = 1000, we find
Dy, * 2 =32.41 and D, * R2 = —43.22. In the continuum limit, the result is Dy = —%DZ.

In a cylindrical sample, we find Do * a® = 11.272, while Dy . and D, depend on the aspect
ratio of the cylinder. This dependence on the aspect ratio is consistent with the result obtained
in Section 3.1.2 by treating the dipole sum in the continuum limit (valid for a simple cubic

crystal). The demagnetization field for a long thin cylinder is zero; hence, we may write the
zero momentum dipole sum as Dy * a’ 4” + Agip |, with the correction due to the lattice

being A4, = 1.24.

Ewald Summation in LiHoF4

We now calculate the Fourier transform of the dipolar interaction in LiHoF4 making use of the
Ewald summation method. Ewald summation leads to rapid convergence of the dipole wave
sum over the entire Brillouin zone. We follow the papers of Aharony and Fisher, and of Bowden
and Clark [92, 93]. The paper of Bowden and Clark generalizes the Ewald summation method
to systems with more than one atom per unit cell, such as LiHoF4, by summing over a set of
sublattices. Here, rather than summing over sublattices, we prefer to introduce a geometric
factor to account for each of the atoms in the unit cell. We begin by performing the Ewald
summation in a spherical sample. In Section 3.3.1, we go on to perform the Ewald summation
in a long thin cylinder, relevant to a system with needle like domains. We have found no such
calculation in the literature.

The dipolar interaction may be written as

1 3Z 82 o7

D¥ = Z

— (3.42)
t%f u ij 1¢o|rl_”‘ 7=0

where, in the last line, we have set ¥; — FJ = 7 and the sum runs over all atoms in the lattice

excluding the atom at 7. We begin by making use of the Gaussian integral

1 2 [ .
i /0 dpe Pl (3.43)
to obtain
Dzz Z itr 2 /wdpe—szz—?lz_ (3.44)
812 par V7 Jo

Note that we are now treating the dipole wave sum as a function of 7. Rearranging, and adding
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and subtracting the / = O contribution, we find

9> 2 [
92/ Jo

821

<< R
D (7) = o

dp|:ze p \r, r\ +lk(rl ) e;?_ (345)
where r = |F|. The function in square brackets is a periodic function of 7 on the lattice; hence,

we may consider its Fourier transform
g(f{) = iZ/ d3;ﬂ’e*P2|71*7|2+i(z+1?)'(71*7)6*1'1?'71' (3.46)

Ve cell
At this point, we must take the basis of our lattice into consideration. Specializing to the
case of LiHoF, , the fractional coordinates of the four holmium ions in the basis are given by

(0,0,0),(1/2,1/2,1/2),(0,1/2,1/4) and (1/2,0,3/4). We consider each atom (labeled 1 to

4) separately, breaking the sum up into four terms

7 1 217 2 i(FR) (7 —7 1 20 7 B =
K)=— e P |7 —F|*+i(k+K)-(7—7) _ _/d3—» —p224i(k+K)-F 347
K) = d37e P HilktK) T
&)=y /
—ik-(0,2 ¢
g3(1—<»): e ! ( 72a4) /d37 —p2r2+l(k+K)r

The summation over [y includes all Bravais lattice vectors, rather than being over each atom
in the crystal. We replace the sum of integrals over unit cells with a single integral over all
space. At this point, we specialize to the case of a spherical sample, and perform the integral

appearing in the g,(K) functions in spherical coordinates

1= / P sin(0)drd0dpe P’ +IRIreos®) — 47 / 2ar KK e 5 )
|k+K|r
Taking y = |k + K|r, we may write
o o, 4r ) P2y2
egn(K)=——=—7 /ysmyex — —=—)dy, (3.49)
K=, |k +K|? )exp yk+1<|2)

where the o, are geometric factors from our four atomic sites. Summing over all four contri-
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butions yields

_ a(K) 4rm / , p2y?
K)= — ysin(y)exp ( — —=—)dy, (3.50)
8(K) ==, P (v)exp ( |k+K|2)
where the geometric factor is
m

Making use of equation (3.50), we return to the dipole wave sum, which is given by
limy_,q D%Z(7), with DZZ( 7) given in equation (3.45). We separate the integral appearing in
equation (3.45) into two parts to obtain

% 1

— 82 2 A —p?lH—7
D%Z(r):a_zzﬁ[/ ng k+K —I—/ deelkrle P27 —7? ~32, (3.52)
A

kZ+KZ) 206([() i(z+g).;/|k+i<|
=—= d
Z ek va o b e

82 2 2 2 az
lrl _ =
3Z \/_Z H(A|F;—7|) >

with

*o 22 A [ 2
F(2) :47r/ ysin(y)e * dy H(s)= ;/ dye ™. (3.53)
0 s

We have introduced a convergence factor A. When the integration variable p is large, we
perform the summation in real space; when p is small, we perform the summation in Fourier
space. An appropriate choice of A ensures the rapid convergence of the dipole wave sum.

Separating the K = 0 and 7, = 0 components of the sums from the rest, we find

7 l (kZ+KZ)22a(I?) \k+K\
Pi=r ( ) /dz (2 KE’O R+K? V& /0 d2F gp(e) B34

+hma—2—z T (Al —7|) — hm 0" 1 a—ziH(A)
002 T el a2r aZym )

This expression is an extension of Aharony and Fisher’s work in [93] to a lattice with a basis.
The above expression matches equation (14) of Bowden and Clark [92], except that in the
above expression we have summed over the four atoms in the basis introducing a geometric

factor, rather than summing over each sublattice separately. Following Bowden and Clark, we
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consider each of the four terms in equation (3.54) separately.

We begin with

1 (K\* 8 [&

In the limit kR > 1, we may take the range of y = kr in the integral in F(z) to be zero to infin-
ity. This neglects boundary effects; however, as discussed in the introduction to this chapter,

boundary effects are only significant when kR < 10. Making use of the integral

* 1
/0 ysin(y)e = dy = ﬁexp( @) (3.56)
we find
1
IS Te 2 1 k2 K2
A=—— 8 dz=——|(— 16 —— ). 3.57
Vc<k) ”/o A~ Vc(k) ”e"p( 4A2) (3-57)
We have dropped the boundary term
1 (kN2 e
0A = — (—) 2T / “dz / dy ysin (y)e <. (3.58)
V. \ k 0 kR
Similarly, we find
1 KLK)22a(K) 2=
p—_ Ly K+ - )" 20 )/"”( dzFu(2) (3.59)
Vc[?#) k+K[2 Vm Jo
1 K+ K* _ k+K|?
= —— (ﬁ+ﬁ)47roc(K)exp(—| +2‘ ),
Vcl?#o lk+K|? 4A
with a boundary contribution of
1 k4 K%)? S
IB=1, Y (K +K%)° a(K) /k+Kd / dy ysin (y)e <. (3.60)
%20 k+K k+K|R
We may rewrite the third term as
9? 9% [erfc(A
C=1lim——— ¥ *H(Alf 7)) = ¥ FT 2 (M> (3.61)
r—0 dz? \/_H;AO 720 0z2 |7

where we have used the fact lim,_, g—; f(rn=7) = (|77]), and made use of the compli-

8z2
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mentary error function

erfc(z e’ dy. (3.62)
A A
Taking the derivatives, we find C =}z 4 ek E A7) with
2A e~ (A1)’ 377 erfc(Ar)) (32
EMNF) === AN+ L)+ — (1) . 3.63
)= | (e (5 G.6)

Finally, using the error function, we may rewrite the last term as follows

, 82 9% 2

82 2 e > 0% [1
— : - -y — _ T | =
- lz%(az - o) =i (G [feran])

Making use of the series expansion

2 = (_l)nZZn-H
f — 3.65
erf(z) nrlg{) n!(2n+1) (5.65)
we find
4N
p— (3.66)
3w
Our result for the dipolar sum is then
D¥ = A7 +) R TEN (7 )—i i 2167rexp L (3.67)
k 3\/_ 720 Ve \ k 4A? '
1 K+ K7)? " k+K|?
——Z(_ﬂ_—q)47roc(l()exp _ K+ K] )
VeiZy [t RP w

Note that in the limit A — 0 we recover the original dipole sum, as we must. The first two
terms in the above expression are generally valid. The remaining pair of terms are valid for
a spherical sample in the limit R > A. When considering the limit kX — 0, it is important to
remember that we must include contributions from the boundary. In practice, it is easiest to
perform the dipole sum directly for small values of k, and use the Ewald summation method

otherwise.
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Ewald Summation in a Cylindrical Sample

We now consider the Ewald summation method for a cylindrical sample. Long thin cylinders

are of particular interest because LiHoF, forms needle like domains, as discussed in the intro-

duction to this chapter. We perform our analysis using plane waves; however, an expansion

in cylindrical waves may prove useful for obtaining analytic results. We leave the cylindri-

cal wave calculation as a subject of future work. We begin by evaluating integral (3.48) in

cylindrical coordinates

2
[— /d3_, —p2P+i(k+K)F / / / (P42 +ilk | +K | |rcos 0+i(ki+K?)z 2rdrd0dz.

Performing the angular integral gives
h R 2.2 - = 2,2 K+ K?
1:27r/h/0 re P Jo([ky + K |r)e P T e KK )2y,

The r and z integrals are separable so that I = Irl;, with

R 2.2 - — h 2.2 (kL K?
IR:271'/ re P Jo(lk. + K |r)dr Ih:/ e P Pl K )z g,
0

—h

We begin by evaluating [, for a long thin cylinder. We find

h=co (12 7)\2
I = 2/ P cos ((K*+K%)z)dz = %Eexp <M) .
0

4p2
Recall from equation (3.50) that g(K) = 4” 1. We find

(k+K%)2

— 3 _ =/ - -
- a(K 2r2 e 4? lky +K 1 R _p2y2
o(k) = 2B _ 21 [ e (22 )

Ve ’kl—l-KL‘z p ’kL‘I’KL‘z

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

and, following the same steps as for the spherical sample, we find the dipole wave sum to be

R B (kz+KZ)2
A TR
. :_4_717 (kz+Kz)2 a(f{ ARG 4221k +K | | G ( )d
k v 7 &2 lk +K (|R\E)4Z
K, #0 ¢ gzo kL + K| 0 <

kzz

C

770
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16”( ) / e )dz+7+2 TEN(R),

(3.73)



where

X 1 1
Z):/O yo(y)e ”dy——e 4>

22 (3.74)

X=o0

This result is not valid when k| = 0 as the expressions involve a division by zero. In the special
case k| = 0 and k* # 0, the result is

_(K4K%)?
4 K4+K)? L (e PKEP
D%Z =—— Z (ﬁ—z)oc(l()/lq —GII? |R(z)dz (3.75)
k=0 Vc I_(‘lsﬁ() |KJ_| 0 Z L1
a([?)n/“’ . (KR 4A TE N
—Z— € (1—e )dz+——|—z TEA (7).
& V. <k4+AK2) 3T 20

The first summation is over all reciprocal lattice vectors with K, # 0, and the second summa-
tion is over all reciprocal lattice vectors such that K, = 0. Note that the summation over K?
includes the K% = 0 term. If £ = 0, the above result is still correct, except for the fact we must
now neglect the K = 0 term from the second summation. The discontinuity between the k=0
result and the result at finite & is due to the boundary terms neglected in taking the limit 7 — oo
in equation (3.71).

We now evaluate the dipole sum in the limit, k; R > 1. Defining

- o . kK + K¢ 2
B(K) =1+7y(K) Y(K) = % (3.76)
ki +K||
we find, in the limit k| R > 1,
5 A _ﬁ4(§>
DZ =¥ y(®)a(K) / KRl E g, (3.77)
k Ve 20 0 &
8 7&5) 4A
T kpe % it A (2
——7(0) di+—=+ Y “TENR)
Vc Z3 3ﬁ 720

Performing the integral over z yields

4r KR4+K2 L kR 167 (KE\Z _ 2 4A3 -
Déz =— 7 (_,_{——_,)205 K)e o — v (E) e 4+ ——+ Z €lk’rlEA(’7l)'
c 1?960 (k-l—K) c 3\/E 740

This is identical to the result for the spherical sample, which is to be expected as the shape
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dependence of the sum is important in the opposite limit k| R < 1.
In the limit x = k| R < 1 we find for equation (3.74)

2,2

X 2.2 1 B
Gx(Z):/O yo(y)e =? dy%z—zz(l—e =, (3.79)

We may then write the K=0 component of the momentum space summation in equation (3.73)

as,

_x0)
4r

1671 & e a2 © 0 2
Ip=— y(())/ + Gi,r(2)dz=——7(0 )%2 e 4 (1—e w)du. (3.80)
Ve 0 z Ve -

Assuming A is chosen so that AR >> 1, which is a reasonable assumption because good con-
vergence is usually achieved with A chosen to be approximately the inverse lattice spacing, we
find

A (K*R)? A [~ Am _ K
Ip=— v sze (l—exp(— o >)dzw—— kgezdzz—vce W, (381

We are left with the task of evaluating terms in equation (3.73) for which K # 0. We separate
terms for which |K | | = 0 (the K, summation) and treat them in the same fashion as we treated
the integral Iy. For |K||# 0, we have |k, + K, |R > 1, and we may make use of equation
(3.74). The final result for the dipole sum in a finite sized cylindrical sample in the limit
k| R < 11is given by

D= “‘/_” KK e _Ey aiye W Ny hipag)

© 1Ko (KHK)? Vel T A

(3.82)

If we take k| = 0, we will obtain the same result as will be obtained by performing the integrals
in (3.75).

If k = 0 then the result above is still valid as long as the K* = 0 term is excluded from the
second summation. We reiterate the fact that the apparent discontinuity at k =0 is due to the
boundary term neglected when taking the limit of a long cylinder 7 — <. In reality, there is no
discontinuity, but the function varies extremely rapidly in the region near k = 0. What equation
(3.82) gives us is the small momentum behaviour (k| R < 1) of the dipole wave sum in a long
cylinder (k;h > 1) of LiHoF,.

In order to perform the dipolar sum in LiHoF,, we take A = and consider a system with

size R = 10000a, where a = 5.175A is the transverse lattice spacing. This roughly corresponds
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to a domain with radius Sum. If k| R <1 we use (3.82), otherwise, we use (3.78). In the
special case k = 0, we exclude the K, = 0 term from equation (3.82). In real space, we sum
over a cylinder with a radius and height of 10 unit cells, and sum over a corresponding number
of reciprocal lattice vectors. This is more than enough to ensure convergence of the series
Y50 e’%'?lEA(F}). In Figures 3.1 and 3.2, we plot the dipole summation as a function of the

transverse momenta for various values of the longitudinal momenta. We clearly see the rapid

variation of the sum near k = 0.
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Figure 3.1: In the figure above we see the Fourier transform of the dipolar interaction in
a long thin cylindrical sample of LiHoF, as a function of transverse momenta at
k; = 0 (left), and k, = 5% (right).
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Figure 3.2: In the figure above we see the Fourier transform of the dipolar interaction in
a long thin cylindrical sample of LiHoF, as a function of transverse momenta at

k. = 2Z (left), and k, = Z (right).
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Summary

In this chapter, we considered the Fourier transform of the dipolar interaction, necessary for a
momentum space analysis of systems such as LiHoF4. In Section 3.1, we performed the dipole
wave sum in the continuum limit. This gave correct results when the underlying lattice of the
system being dealt with is simple cubic. In an infinite spherical sample, we found there is an
ambiguity in the zero momentum limit of the dipole wave sum. This ambiguity is resolved by
considering the effect of the boundary. In Section 3.1.2, we redid the previous calculation for
a long thin cylindrical sample, and show that the small momentum behaviour will depend on
the aspect ratio of the cylinder.

After performing the dipole wave sum in the continuum limit, we turned to the dipole wave
sum for a sample of LiHoF,, where we must account for the underlying lattice. In Section
3.2, we examined the small momentum behaviour of the dipole wave sum in LiHoF, by direct
summation. Direct summation becomes unreasonably slow away from k = 0. In order to
obtain the dipole wave sum in LiHoF4 over the entire Brillouin zone, we made use of the
Ewald summation method. We performed the Ewald summation for a spherical sample, and
for a long thin cylindrical sample. The cylindrical sample reflects the dipolar field felt in a
sample of LiHoF, that is divided into needle like domains. The results obtained via Ewald

summation in a long thin cylindrical sample are used throughout the rest of this thesis.
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Chapter 4

Spin Half Spin Half Model

Consider a spin half Ising system in a transverse field coupled to a spin half nuclear spin bath

with Hamiltonian

_ Iy + +
H = 2;\4]5552 AZS"—i—A ZIZSZ ;1 ST +17SH). 4.1)

The Ss represent electronic spin operators, and the /s represent nuclear spin operators. We
assume a longitudinal ferromagnetic interaction between electronic spins, and take A, and the
hyperfine interaction, to be positive. Our choice of energy units is arbitrary. For simplicity,
we choose energy units such that J = 1, and it is to be understood that the transverse field and
hyperfine interaction are now in units of J. We introduce this relatively simple Hamiltonian as
a toy model that illustrates the effects of an anistropic hyperfine interaction on the transverse
field Ising model. With the inclusion of a transverse field acting directly on the nuclear spins,
= —A, Y I7, this serves as a toy model for LiHoF;. Many of the qualitative features of
LiHoF, are easily illustrated by this model.

In Section 4.4.1, we will show the spin half spin half (SHSH) model undergoes a ferromag-

netic to paramagnetic phase transition at a critical temperature of

Vo 1[A2
A~ — —A ). 4.2
> +2(AJ_ L) (4.2)

For A > A., there will be no longitudinal mean field (MF) acting on the system. In this case,
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the single ion Hamiltonian,

A
7

A _A
j%:—M%%ﬁ$+3Hﬁ$+ﬁ&U: 5
0

A
-4 0
_A A
4 2
AL Az
2 T4
A
0 -3

0
0
4.3)
A,
y

A Y
2

may be diagonalized analytically. We use as our basis [¥) = (| 1), | 41), [ 1), | 41)), where

the double arrows denote electronic spins, and the single arrows denote nuclear spins. The

eigenvalues of the single ion Hamiltonian are

1 A, +A )2 A

4
E-—lvgl+
T2

(Az +A, )2 N Ay
and their associated eigenvectors are

1 i

4

1) =

3) = a3

(Az _AL)

4

12) = o

[4) = o4

—A )2
L G—AL?

4

o[>

—E2+%
—Ey+ %

D> >

—Es+%
—E4—{—’%

>

2 Al
— 4.4
+= (4.4)
Al
4
4.5)

where the a’s are normalization constants. In the limit A > A, A |, making use of these eigen-

values and eigenvectors, simple analytic expressions for the magnetization, susceptibility, and

other physically relevant quantities may be obtained in terms of the parameters of the Hamil-
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tonian. We list here, for future reference, the normalization constants expanded in this limit,

L[, A+AL (A +A)
a=—|1-= — 4.6
7 Al 4A 87 (46)
1. A A, (A,—A))?
L P _ Az
RN E Y sz
L[, Ac+AL (A +AL)
o3 =—|1+= -
S=Al T T sz
[ A—AL (A.—AL)?
ap=—|1+= —
“CAl T T gAZ
. . A.1\3
We also list the difference between energy levels, Ej; = E; — Ej, to O((=%=)”)
By 2 AL A Fay = a1+ AL ATTAL @)
70 2A TR T AT s '
ALl A [ A AZ+A%
En=—|1—214+... E+r=All—— Z
) [ T } AT T A T
(A2+AJ_)2 [ (AZ_AJ_)Z
Ey =All Fo = A1 W40
31 [ + QA2 + 42 _ + A2 +
We now introduce the single ion basis operators
Ly, = |m)(n|, (4.8)

where m,n € {1,..,4} refer to the eigenstates introduced in (4.5). In this thesis, these operators
will also be referred to as mean field (MF) operators. We prefer to use the term single ion here,
as we are working in a regime where the MF is zero. Further discussion of these operators is
available in Appendix A.

In terms of the single ion operators, the z component of the electronic spin operator may be
written as

S* = c12[L12+ La1| + c3a[L3a + Laz) + c14[L1a + Lar | + c23[Loz + L3o] 4.9)
where
1 A2 A2 A,
CiJ'ZEOC,'OCj ?—T—f—ZE,’Ej—?Z(Ei—i—Ej) (4.10)
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In the limit A> A, A |, we find the matrix elements to be given by (to 0( (AZL )3))

6122—63422—2 01426232—%{ —%] (4.11)
The x component of the electronic spin operator is given by
§* = an L +axnlyn +azslaz + asalas + ars[Liz + L31] + az4[Loa + Lao], (4.12)
where
aii = — oA <Ei _ %) (4.13)
and
a3 = PBNA 1A iy = 2HNA —A ). (4.14)

We have listed the z and x components of the electronic spin operator in the paramagnetic
phase of the model. We now proceed to do so for the nuclear spin operators as well. The z

component of the nuclear spin operator is given by
I =da[Li2 + Lo1] + d3a[L34 + Laz] + d1a[L1a + La1 ] + da3[Lo3 + L3o) (4.15)

where the matrix elements are

1 A2 A2 A
dij:—Eaiaj|i§z+7—EZ(Ei—l—Ej)—FZEiEj . (416)

In the limit A > A_,A |, we find the matrix elements to be given by (to O( (%)3))

dp=dss = [ - Mi;—;ﬂ du=—dy =55 @
The x component of the nuclear spin operator is given by
I =by1Li11 — baLoy +b33Laz — bagLlas + b13[L13 + L3t + bos[Los + Lap), (4.18)
where
bii = ?A (E,- - %) (4.19)
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and

o o 0
b1z = _%A(Az +A]) by = %A<Az —A)). (4.20)

These analytic expressions are listed here for reference, as they are useful for understanding
the behaviour of the electronic and nuclear spins. They will be used throughout the remainder
of this chapter to analyze the magnetization, susceptibility, and excitation spectrum of the spin
half spin half (SHSH) model .

The SHSH Hamiltonian given in equation (4.1) may be divided into two parts, ¢ = 4+

', where, in terms of the single ion operators,
=YY E.L, 4.21)
i n
is the diagonalized single ion Hamiltonian, and

1
H' = ) ZV, jSiS5 (4.22)
i#]j
is the interaction, with the $* operator given in terms of the single ion operators in equation
4.9).

Perturbation Theory in the Ordered Phase

In the presence of a longitudinal field, or in the ordered phase of the system, we are no longer
able to diagonalize the single ion Hamiltonian of the spin half spin half (SHSH) model exactly;
however, we can treat a longitudinal field that is much weaker than the transverse field pertur-
batively. This allows us to study properties of the ordered phase of our model analytically in

the vicinity of the system’s quantum critical point. The Hamiltonian is

Vit el B

1 -~
H = Hyr — 5 Y VijSiS: (4.23)
27

where §f = S5 — (8%)0, and the subscript 0 denotes the average is taken with respect to the MF

Hamiltonian. The MF Hamiltonian is given by

A
Hiar = —AY ST —HY S +A Y IS+ TL LS+ 177, (4.24)
l l l

1
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with H = h+Vy(S°) and Vp = ¥;V;;. H includes an applied longitudinal field / as well as the
MF of the neighbouring electronic spins, which we obtain by using the MF Hamiltonian to
solve for the magnetization self consistently. At each site, we divide the MF Hamiltonian into
two parts, Sy r; = 4 + S5, where 4, is the single ion Hamiltonian given in (4.3), and J#*
is the longitudinal component of the MF Hamiltonian, which we assume is small. Working in

a basis of eigenstates of .77); we find,

0 —H612 0 —Hc14
—H 0 —H 0
HE = €12 €23 , (4.25)
0 —Hcys 0 —Hcsy
—Hc14 0 —HC34 0

where the c;; are given in equation (4.10). In what follows, we will drop the subscript i, and it
is to be assumed that we are referring to the MF Hamiltonian of a single ion.

We now include the effects of .7#°¢ perturbatively to second order in the ratio of the longi-
tudinal field to the transverse field, %. We find the perturbed energies to be

2,2 2 2 2
Hci, H cis H C12 H2c3,

E\,=E, — E,=FE)+ (4.26)
Ery Eq Er Es3;
- H?%c2 H?c3 ~ H?c? H?c?
E3=E3+—2 - —* Ey=E;+—14 4 =234
32 E43 E4 E43
and the normalized (to order %2) wavefunctions to be
2c H%cyc
L)+ E2)2) 4 B gy B3y 4 Hcud3)
‘1> — 21 41 = 31 221 - 31L£41 (427)
21 41
_ Hceypp Heps _ H’cpsenn H’cycn
|§> _ 2) £y D+ E3p 3) EpEr [4)+ EpnkEs [4)
2,2 2.2
\/1 + HE§l2 + HE§23
21 32
H H H?
5y R A ) — )
2 . 2
\/1 + HE§23 + HE§34
32 43
H H H?
g 19T~ )+ e + e
H2c? H2c2
1 14 34
\/ T T

These expressions are listed here for reference, and will be used subsequently to analyze the
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magnetization and susceptibility of the SHSH model in the vicinity of its quantum critical

point.

Mean Field Electronic Spin Magnetization

We calculate the electronic spin magnetization of the SHSH model self consistently from the

MF Hamiltonian given by

AL e oot
Hour = —Azi:Sf—HZi:Sf—l—Azzi:IfonLTZ(li S;+1781), (4.28)

1

where H = h+Vy(S%)p and Vo = ¥ ;jVij- At each atomic site, the Hamiltonian is given by

A, H A
it 72 AO 0
A z H L
-4 L4 4 0
Hari = 2 W4l w ~ | (4.29)
0 R I
A Z H
0 0 -2 1t2

where we are using the same basis as in equation (4.3). In this basis, the electronic spin

operators are given by

0 0 0 0 3 00

|0 200 g_|2000 (4.30)
0 0 5 0 000 1
0 0 0 —1 0030

In Figures 4.1 and 4.2, we show the ground state expectation values of the electronic spin
operators in the MF approximation for an isotropic and an anisotropic hyperfine interaction,
solved for self consistently, plotted as a function of the transverse magnetic field A. For brevity,
we will often refer to the expectation value of a spin operator as the magnetization, when, in
fact, they are proportional to each other. We consider a simple cubic crystal with a nearest
neighbour exchange interaction so that V) = 6J, with J = 1 being the exchange coupling. When
the hyperfine interaction is isotropic, we find its only effect on the electronic magnetization is a
small overall reduction. The effect of an anisotropic hyperfine interaction is far more dramatic,
as can be seen in Figure 4.2. We find that a dominant longitudinal hyperfine interaction tends
to increase the longitudinal electronic magnetization, stabilizing it against the effects of the

transverse field; whereas a dominant transverse hyperfine interaction has the opposite effect.
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Ground State Magnetization in MF Approximation

f —

A,=A =05 i

A,=A =0.01

Figure 4.1: The plot above shows z (solid line) and x (dashed line) ground state compo-
nents of the electronic spin operators (in the MF approximation) of the spin half
transverse field Ising model with an isotropic hyperfine interaction, as a function of
the applied transverse field A. We work in units of the exchange interaction strength
J. We find the z component of the magnetization is uniformly reduced with increas-
ing transverse field strength. We obtain these results from the MF Hamiltonian of
the spin half spin half model, given in equation (4.28).

In Figures 4.1 and 4.2, we neglect the effect of an applied transverse magnetic field acting
on the nuclear spins, J7;, = A, Y; I’++I’7 When one considers an effective low temperature
Hamiltonian for systems such as LiHoFy, such a field is present, and cannot be neglected. This
transverse nuclear field is present because when we truncate an electronic spin down to a spin

half subspace, the effective operator takes the form

HF=Cu+ ) Curt. (4.31)

V=x,y,Z
In the hyperfine interaction, the C,, terms lead to an effective field acting directly on the nuclear
spins. This field may be understood as the effect of a shift in the electron cloud surrounding
an ion due to the applied transverse field, that causes a transverse field to act on the nuclear
spins via the hyperfine coupling. This transverse field due to an atom’s electron cloud may

be orders of magnitude larger than the applied field acting directly on the nuclear spins. In
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Figure 4.2: The plot above shows z (solid line) and x (dashed line) ground state compo-
nents of the electronic spin operators (in the MF approximation) of the spin half
transverse field Ising model with an anisotropic hyperfine interaction, as a func-
tion of the applied transverse field A. We work in units of the exchange interaction
strength J. The plot on the left shows the magnetization when the longitudinal hy-
perfine interaction (A; = 0.8) is dominant, whereas the plot on the right is for a
dominant transverse hyperfine interaction (A | = 0.8). With the longitudinal hyper-
fine interaction dominant, we see that the critical transverse field is driven to larger
values with a decreasing transverse hyperfine interaction A . With A| dominant,
decreasing A, reduces the critical transverse field. We obtain these results from the
MF Hamiltonian of the spin half spin half model, given in equation (4.28).

particular, in the Ho3* ion, the field at the nucleus due to the 4 f electron cloud is close to 800
Tesla [82]. The effect of the the applied field acting directly on the nuclear spins (4.9 Tesla at
the zero temperature critical transverse field in LiHoF,) is suppressed by a factor of the nuclear
magneton Wy, which is about 1836 times smaller than the electronic Bohr magneton Lip.

We see in Figure 4.2, that as A| — 0, with A, fixed, the critical transverse field is driven to
higher values. This is because with A | = 0 there is no mechanism for flipping nuclear spins
in [* eigenstates; the nuclear spin up and down subspaces are entirely disjoint, as is apparent
in equation (4.2). Within each subspace, the nuclear spins constitute an effective longitudinal
field acting on the electronic system. The effect of the transverse field acting on the nuclear
spins is a reduction of the critical field values, even when A| = 0. This point is illustrated in
Figure 4.3 where we have repeated the MF calculation for the anisotropic case with A, = %.
This roughly corresponds to the ratio of the strength of the effective transverse field acting
on the nuclear spins in LiHoFy, to the strength of the effective field acting on the electronic
spins, when the system goes critical (A(BS) =~ 50A,(BYS), with BS being the physical critical
transverse field of LiHoF4). Even with this modest value of the transverse field acting on the

nuclear spins, we see by comparing Figure 4.2 and Figure 4.3 that it has a significant impact
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on A, the point at which A drives the longitudinal magnetization to zero.

Ground State Magnetization in MF Approximation
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Figure 4.3: The plot above shows z (solid line) and x (dashed line) ground state compo-
nents of the electronic spin operators (in the MF approximation) of the spin half
transverse field Ising model with an anisotropic hyperfine interaction and a trans-
verse field acting directly on the nuclear spins, as a function of transverse field A.
We work in units of the exchange interaction strength J. The longitudinal hyperfine
interaction (A; = 0.8) is dominant, and the applied transverse field acting directly
on the nuclear spins is A, = %. We obtain these results from the MF Hamiltonian
of the spin half spin half model, given in equation (4.28), with an additional term
Ty = —%(l * 4 17) to account for the transverse field acting on the nuclear spins.
This additional transverse field leads to a reduction in the critical transverse field of
the system.

In the high field limit, with A > A so that (S*) =0, and A > A_,A |, we find the ground
state electronic magnetization in the x direction to be
1 5(A,+A))?
N R i LA 4.32
(5°) 2 16A2 * (4.32)
We see that the effect of the nuclear spins is to suppress the x component of the magnetization
in the paramagnetic phase.

In the vicinity of the phase transition, where the longitudinal magnetization is small, we
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may use our perturbation theory results given in equation (4.27), and the $* operator given in
equation (4.9), to write down an analytic expression for the longitudinal magnetization. The

ground state longitudinal electronic magnetization of the system is given by (to order %)

H {ﬁ + ﬁ + 2H cye3; | 2H?¢3ch, 4H2€12€23634614}
- Ey ' En E3E3 E3 E3, E31E41 B
(1]$%1) = (4.33)
|:1_+_H2§%2 +H2§%4:|
E3, E}

This expression will be used in Section 4.4 when discussing the susceptibility of the system.

For now, we note that (1/S%|1) = dm is the infinitesimal change in the longitudinal electronic

magnetization upon application of a small longitudinal field, H = dH. To leading order in %
we have
2¢2,  2c3
dm :{ 12 ﬂ} dh. (4.34)
21 Egq

Recall that H = h+ Vp(S%)g. We have used the fact that dH ~ dh. Differentiating the MF
magnetization with respect to & yields the RPA expression for the susceptibility, as shown in
Appendix B. We identify

2C2 2C2 1 1 A2 A A2 A2 A2 A2
2z 12 14 Z z F R r Rl
0 |:E21 E41:| 2A|: 2A(AJ_|: 2A ( A2 ):| ( A2 )):|

(4.35)

as the single ion longitudinal electronic susceptibility of our SHSH system, at zero temperature.

In the final expression, we have expanded in the limit A;,A |, < A. To leading order we see

1 1{A§

A, —AJ ) (4.36)

which matches the result derived in [64]. This result ceases to be valid when A| — 0 because
the lower two energy levels, and the upper two energy levels, of the SHSH system become
degenerate; hence E5; in equation (4.33) is zero. As previously mentioned in this section, when
A =0, in the absence of a transverse field acting on the nuclear spins, the nuclear spin up and
nuclear spin down subspaces are disjoint. When calculating thermodynamic averages in the
MF approximation, we may consider the two subspaces separately. Within each subspace, the
nuclear spin constitutes a longitudinal field acting on the electronic degree of freedom, and the
physics is the same as that of the transverse field Ising model in a longitudinal field, discussed

in Appendix B. We will comment further on the degenerate case in Section 4.4, in which we
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calculate the single ion susceptibility making use of the MF operator formalism discussed in
Appendix A. Degeneracies are easily dealt with using this formalism.

In the non-degenerate case, equation (4.36) shows that an isotropic hyperfine interaction
will have little effect on the susceptibility of a magnetic system. However, with an anisotropic
hyperfine interaction, where the longitudinal component is dominant, the longitudinal suscep-
tibility is enhanced. Conversely, if the transverse component of the hyperfine interaction is
dominant the longitudinal susceptibility is suppressed.

As a final note, we point out that the total magnetization of the system will have a nuclear
component, as well as the electronic component discussed above. In the MF Hamiltonian
(4.28), we have neglected the effect of the longitudinal field acting directly on the nuclear
spins because this term depends on the ratio of the nuclear to the Bohr magneton. The MF
Hamiltonian including this term is (including a transverse field acting directly on the nuclear

spins)
Hgr = —AY ST —HY 55— E thZ Z (G +17) (4.37)

+A, ZIZSZ Z(ﬁs +17S).

2

From the free energy we find

—0F o ez un .
5, =M=+ EU )0- (4.38)
Performing a second derivative yields
—9°F _ oM 2 My Ky 2
G = g = B (S0 (S5 2 (o= (So(Ldo) + F(B)o— (1)) 439

The result above is the classical result for the relationship between the susceptibility and the
electronic and nuclear correlation functions. See the discussion surrounding equation (D.15)
for further details. The susceptibility given by x° in equation (4.36) is the zero temperature
Van Vleck contribution to the susceptibility of the system due solely to the electronic spins.
For an explanation of the Van Vleck contribution to the susceptibility, see the discussion that

follows equation (D.28). For convenience, we note that
x5 = —Re[g(w = 0)], (4.40)

where g(®) is given in Appendix D. The total Van Vleck contribution to the single ion suscep-
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tibility of the system may be written as

—9°F HN M
= Koot = X5 2 Kien u_gléfn, (4.41)

where x¢,, is the mixed electronuclear contribution, and y;°, is the purely nuclear contribution.
In the following section, we turn our attention to the nuclear spins, and perform a similar

MF analysis.
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Mean Field Nuclear Spin Magnetization

We now calculate the nuclear spin magnetization of the SHSH model in the MF approximation.
For brevity, we will often refer to the expectation value of a spin operator as the magnetization,
when, in fact, they are proportional to each other. Using the same basis as for (4.3), the nuclear

spin operators are given by

0 0 O 0030
03 0 O 000 3

F= > I = 2 4.42
00 —3 0 000 (442
00 0 -3 0300

In Figures 4.4 and 4.5, we show the expectation value of the nuclear spin operators as a function
of transverse field for an isotropic and an anisotropic hyperfine interaction. We see that the

nuclear spins order at the same critical field as the electronic spins.

75



Ground State Magnetization in MF Approximation

f —

A=A =1
A,=A =05 i

A,=A =0.01

Figure 4.4: The plot above shows the z (solid lines) and x (dashed lines) components of
the ground state expectation values of the nuclear spin operators (in the MF approx-
imation) of the spin half transverse field Ising model with an isotropic hyperfine
interaction, as a function of transverse field A. We work in units of the exchange
interaction strength J. We obtain these results from the MF Hamiltonian of the spin
half spin half model, given in equation (4.28). We plot the absolute value of the
expectation values of the nuclear operators, noting that they are equal and opposite
their electronic counterparts.

When the hyperfine interaction is isotropic, the electronic and nuclear magnetizations are
similar. However, with an anisotropic hyperfine interaction, we see in Figure 4.5 that the nu-
clear magnetization is quite different from the electronic magnetization shown in Figure 4.2.
When the longitudinal hyperfine interaction is dominant, the longitudinal nuclear spin magne-
tization is far more resistant to the effects of the transverse field than its electronic counterpart.
This can be understood by inspecting equation (4.28). We see that if we set the transverse
hyperfine interaction A | to zero, there is no energy benefit associated with aligning the nuclear
spins opposite the transverse field. The longitudinal hyperfine interaction holds nuclear spins
along the easy axis of the system. When the transverse hyperfine interaction is dominant, we
see that the longitudinal nuclear magnetization is more easily reduced by the transverse field
than its electronic counterpart. Again, by inspection of equation (4.28), we see that if we take

A; =0, it is energetically favourable for the nuclear spins to lie opposite the transverse field.
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Ground State Magnetization in MF Approximation Ground State Magnetization in MF Approximation

A =0.01

Figure 4.5: The plot above shows the z (solid lines) and x (dashed lines) components
of the ground state expectation values of the nuclear spin operators (in the MF
approximation) of the spin half transverse field Ising model with an anisotropic
hyperfine interaction, as a function of transverse field A. We work in units of the
exchange interaction strength J. We obtain these results from the MF Hamiltonian
of the spin half spin half model, given in equation (4.28). We plot the absolute value
of the expectation values of the nuclear operators, noting that they are equal and
opposite their electronic counterparts. The plot on the left shows the magnetization
while the longitudinal hyperfine interaction (A; = 0.8) is dominant, while the plot
on the right is for a dominant transverse hyperfine interaction (A = 0.8)

There is no energy benefit associated with spins aligned along the easy axis.

We have ignored the effect of the applied transverse field on the nuclear spins in Figures 4.4
and 4.5. As with the electronic spins, we find the effect of a transverse field acting directly on
the nuclear spins is a reduction in A relative to the critical field when the effect of the transverse
field on the nuclear spins is ignored. We also find that if the strength of the transverse field
acting on the nuclear spins is comparable to the strength of the hyperfine interaction, there will
be qualitative changes in the magnetization of the nuclear spins, as can be seen in Figure 4.6. In

. . . . . LT +I-
this figure we include a transverse field acting directly on the nuclear spins, H, = A, }; - er L,

with A, = %. We see that with a hyperfine interaction of strength A, = A | = 0.01 the nuclear
magnetization is affected by the transverse field.
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Ground State Magnetization in MF Approximation

Figure 4.6: The plot above shows the z (solid lines) and x (dashed lines) components of
the ground state expectation values of the nuclear spin operators (in the MF approx-
imation) of the spin half transverse field Ising model with an isotropic hyperfine
interaction, as a function of transverse field A. We work in units of the exchange
interaction strength J. We obtain these results from the MF Hamiltonian of the spin
half spin half model, given in equation (4.28), with an additional transverse field
acting directly on the nuclear spins.. We plot the absolute value of the expecta-
tion values of the nuclear operators, noting that they are equal and opposite their
electronic counterparts.

In the high field limit, with A > A, so that (I*) =0, and A > A, A |, we find the ground
state magnetization in the x direction to be equal and opposite its electronic counterpart,
(I*) = —(7%). When the longitudinal magnetization is small, we may use our perturbation
theory results (4.27), and the I* operator (4.15), to write down an analytic expression for the
longitudinal component of the nuclear magnetization. The ground state expectation value of

the longitudinal nuclear spin operator is given by

H 26126112+2C14d14+2H2C%2C23dZ3 2H>clycadss | 2HPcpacsaciadyy | 2HPcipcazciadss
Ey E4 Es E3 E3E E31E41 B E31E41 B

(1) =

|:1 +Hzc%2 + H%ﬂ}

2 2
E21 E41

(4.43)
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To lowest order in % we find

(4.44)

. 2c12d 2c14d
<1|IZ|1>%|: cdip | 2c14 141H.

Er E4

We identify the term in brackets with the Van Vleck contribution to the electronuclear suscep-
tibility given in (4.41). In the limit A;,A| < A, we find

1 [A, A, A2 A2 A A2 A2
2z _ 1— =4 ==L Lo =L, 4.45
Xoen 2A{Al( ot ( A2 ))+2A+ A2 (443)

Dropping the contribution to the Van Vleck susceptibility coming entirely from the nuclear
spins, which is suppressed by a factor of “ , we find from (4.41) that the zero temperature Van

Vleck contribution to the susceptibility of our system is given by
Un

e _ L oA LA N
g X0en T 2 i)t \a

We note that the overall contribution from the electronuclear term is positive. The minus sign

Un| A
Up

HN

Xé,ztotal ~ XSZ +2
Up

) , (4.46)

in xéfen is cancelled by a minus sign in the ratio of the nuclear to the Bohr magneton. As with
the electronic component of the susceptibility, we see that a dominant longitudinal hyperfine
interaction will lead to an enhancement of the electronuclear susceptibility. We also see that
the expressions cease to be valid in the limit A; — 0. This is because degeneracies in the MF
Hamiltonian lead to a division by zero in the calculations. We will consider the degenerate case

in the following section.
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Longitudinal Electronic Correlation Function

We now calculate the cumulant part of the longitudinal electronic spin spin correlation function
Glk,7) = (TS, (7)5%,(0)) (4.47)

where §7 = §¢ — (§%). This function is of primary importance when it comes to understanding
magnetic systems, as explained in Appendix D. It will be used here in the random phase ap-
proximation (RPA) to obtain the RPA excitation modes, their spectral weight, and the critical
transverse field of the SHSH model. The spectral weights associated with this function are
relevant to neutron scattering experiments.

The RPA, or, equivalently, the Gaussian approximation, includes the effect of fluctuations,
but treats the fluctuations as non-interacting. This approximation takes the fluctuations to be
distributed normally about their mean value. It is essentially the simplest possible correction
to MF theory. The RPA breaks down in the vicinity of a phase transition, where the effects of
fluctuations become important. Any good textbook, for example Goldenfeld [5], will discuss
the validity of the RPA. A common estimate of the error implicit in the RPA involves calcu-
lating how sharply peaked the normally distributed fluctuations are around their mean value.
This is known as the Ginzburg criterion. In order for the Ginzburg criterion to be satisfied we

require

(55— (55)) (55— (59)
EGzle,<S js%><§§-> 7)

<1 (4.48)

The numerator is the zero momentum component of the equal time connected correlation func-

tion S (1t =0) = [ ”é—fr’SiZ: o(®), which is discussed in Appendix D. This correlation function

may be expressed in terms of the spectral density, Si°(®) = 1;)_,52(_{1;)@’ where the spectral density
is given by
p(@) = —2Im [Gk(iw — 0+ ié)] . (4.49)

In terms of the spectral density, the Ginzburg criterion can be written as

1 rdo pEy(o)
Eg— CO P0l™) 450
T2 ) ami—eBo S (+:30)

where we have assumed a uniform magnetization (S7) = (5%)o. In Chapter 6, we develop a field

theoretic formalism that allows for simpler estimates of the error involved in the RPA. A rough
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estimate of the significance of the effect of fluctuations may be obtained by comparing the
prefactors of the effective field theory. In Chapter 7, we will use the field theoretic formalism
to make estimates of the significance of fluctuations in various magnetic models.

Written in the Matsubara formalism, the Green’s function is given by

G(k,7) =

_<TT§;§(r)eXp(—f(€ dTV(T))EE_/"<O>>O, 4.51)
0

<TT exp ( - fOB drV(r))

- __kasz 05 (¢ (4.52)

where

and we define V, = ]lVZij \/,-jeik(’i*’j).
Making use of the MF basis operator formalism discussed in Appendices A and D, we find

the MF, or unperturbed, propagator to be (assuming no degeneracies)

¢(1) = —<Tf§z<r>§z<o>> (4.53)

0

2E;; 2
_ —ZcuDuﬁ—B ZCND Swo+ B {Zc,, } 800

= (iwy)?
Note that the momentum index has been dropped as we are dealing with spins at a single
site. All averages are with respect to the MF Hamiltonian. In the case where any of the MF
energy levels are degenerate, for example, if we take A | = 0 in the SHSH model in which case
E> = E43 = 0, we simply exclude the degenerate terms from the first summation in equation
(4.53).

Armed with the unperturbed magnon propagator, we may perform perturbation theory in
the fluctuations around the MF. It should be noted that Wick’s theorem does not apply to the
spin operators in the usual way; hence, the fourth and higher order interactions cannot be
factored into simple products of pairs of spin operators. This is because spins do not commute
or anticommute. The MF basis operator approach provides a general reduction scheme for spin
operators, and has been applied to products of up to four operators in Appendix E. In the RPA,

the propagator for the system is

gliwy,)

G (koien) = = ST
n

(4.54)
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The remainder of this chapter will be devoted to exploring some of the properties of the RPA

propagator.

Paramagnetic Phase

We now examine the longitudinal electronic correlation function in the paramagnetic phase
of the system, extracting the low frequency spectrum and the critical transverse field. In the

T — 0 limit, for low energy excitations, we find

—g(ioy,) = —g12(i0,) — g14(i0,) ~ A+ B(i,)?, (4.55)
where
. 2 Ji
gij(iw,) = ¢;Dij——"— (4.56)
1 n ij ”Ejz'i _ (lwn)z
and
2¢2,Dyp  2c2,D 2¢2,D1p  2c2,D
A— 12 4 C14V14 B— 0123 12 C143 14 (4.57)
Exi Eq E3) E3,

Note that the zero temperature single ion longitudinal electronic susceptibility is given by y;° =
—g(0) = A. Recall from (4.36) that expanding in the high field limit, A;,,A | < A, we have

2y 20 11 [A
O Eq  Ey 2A  4AA?

——A. 4.58
A J_] (4.58)
We are working in the low temperature limit, so we set the population factors to one, D;; = 1.
The result (4.58) is consistent with the result derived perturbatively in [64]. This thesis is
primarily concerned with the zero temperature limit; however, we note that the formalism used
here allows for easy generalization to finite temperatures. In the case A| — 0, where E,; =0,

the result becomes

202 1 3A2
2z 14 Z
X =— =~ —l——4+-|. 4.59

This is similar to the result for the spin half transverse field Ising model discussed in Appendix
B, with the longitudinal hyperfine interaction playing the same role as a longitudinal magnetic
field.

In terms of the parameters A and B given in equation (4.57), the RPA Green’s function is
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given by

1 —AZ?

G(k,iw,) = : =,
TV Bl (i) - %Y

(4.60)

and the spectrum is given by

O = \/%‘/1 —VA. 4.61)

Note that this is the spectrum in the low frequency limit. The full RPA spectrum will be
discussed in Section 4.5. The spectrum softens to zero, at k = 0, at a critical field given by
1 —Voxs* =0. In the limit A;,A | < A, the critical field is given by

Vo 1[A?
A~ — —A, ). 4.62
C 2+2(AJ_ J_) ( 6)

The RPA value of the critical field is subject to further corrections due to the nuclear spins.
Recall from (4.41) that the total susceptibility contains an electronuclear contribution and a
contribution solely from the nuclear spins. The nuclear contribution is suppressed by a factor
of (ﬁ—’;)z, and may safely be ignored. The leading order correction, due to the electronuclear
susceptibility, follows from 1 — Vo (x§° + 2“ " Xen) = 0. We find the following correction to the

A,
D) ae

critical field due to the electronuclear susceptlblhty
Vi A | 1[A?
Ao~ 2142 +-(=—-A)(1-2
2 AL 2\A|

Ferromagnetic Phase

HN
us

HN
B

Although we can’t diagonalize the MF Hamiltonian of the SHSH model in the ordered phase
of the system analytically, we may include the effects of a weak longitudinal field, H = h +
Vo (S%) < A, perturbatively, making use of the expressions derived in Section 4.1. We begin by
expressing the MF magnetization (4.33) as

(1|8%1) = m = xFH[1 — SH* + yH?], (4.64)
where
2 2
C C
5=z 14 (4.65)
By E
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and

y— (c12¢23E41 + c14¢34En1)?
Ex1E31Eq1(c3yEq1 + ¢34 En)

(4.66)

The MF energy levels and matrix elements are given by (4.4) and (4.10) respectively. Dif-
ferentiating the MF magnetization (4.64) with respect to s, we find the static susceptibility to
be

d(5%)o X5 (H)

Z _ —

where x§°(H) is the single ion susceptibility, in the presence of a longitudinal field H. This
result may also be obtained by taking the zero momentum and zero frequency component of
(4.54). We choose here to differentiate the magnetism to show the equivalence of the two

approaches. The single ion susceptibility, keeping terms up to quadratic order in H, is given by
x5 (H) = x& [1 —38H? — 3yH2] . (4.68)
Expanding in the limit A;,A | < A we find that
2 2 2
1 Al Az €L A Az Az L
o0=—|1—-—+0|— = (1-—=+0(—= 4.69
4A2[ AT (A2 +Ai A PO\ a2 (4.69)

~ {1+A§}
abvviEnavak
AN A2

1 A2 A, A, A, A, A, -1
T § =) ] 22 ’ 4.7
y 4A2Ai[+O(A +0 < +ALZA +0 X (4.70)

LA AATT
407 A% A 2A

and

We include 7y here for the sake of completeness; however, we note that it stems from the second
order perturbative correction to the wavefunctions in (4.27). This correction is unreliable,
and will be dropped from subsequent analysis. Taking only the leading order perturbative

correction to the energies and wavefunctions, we find, in the limit A;,A | < 1,
3H? A?
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If the hyperfine interaction is isotropic this reduces to the result for the transverse Ising model
given in equation (B.11) of Appendix B.

We note that the effects of an anisotropic hyperfine interaction (A; > A ) on the suscep-
tibility are twofold. First, the single ion susceptibility is enhanced by an additive factor of
ﬁ [% — A |, causing the system to magnetize more rapidly upon the application of a longitu-

dinal field. Second, the effect of the longitudinal field is enhanced by a multiplicative factor of

% (1 + 2—2%) . We define the enhanced field to be
1

H.=H 1(1+A%) (4.72)
+ = - _2 ) .
2 A7
which gives
ZZ 2z 3H‘%
X H) =25 1= 557 |- 4.73)

Electronic Spectrum

In Section 4.4.1, we analyzed the low frequency spectrum of the SHSH model in the paramag-
netic phase of the system. In this section we use the full RPA longitudinal electronic Green’s
function to find all the RPA modes of the system, and their associated spectral weights. We
will then examine the low frequency spectrum in the ferromagnetic phase, and find how the
spectral gap varies with the longitudinal field.

We consider the full zero temperature RPA spectrum, which follows from the poles of

g(iw,) Yoo ler 2B Ty (E5y —2°)

G(k,z) = _ = .
Ltg(ion)Ve  ViXjpleij|2E) [Tz (B4 —22) — é}:z(Ejz'l—Zz)

(4.74)

We assume a simple cubic crystal with nearest neighbour exchange interactions between the
electronic spins, and calculate the zero wavevector gap in the modes as a function of transverse
field, and the associated spectral weights as discussed in Appendix B. We see the upper bands,
corresponding to a spin opposed to the MF, and the lower bands, corresponding to a spin in line
with the MF, are split by the hyperfine interaction. In the absence of the hyperfine interaction,
the upper band would soften to zero at a critical value of the transverse field. We see in the
plots that this band is now gapped; however, the spectral weight is transferred down to a lower

electronuclear level which fully softens to zero at the quantum critical point.
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Figure 4.7: The plots above show the RPA modes (left), and their associated spectral
weight (right), of the spin half spin half model with an anisotropic hyperfine inter-
action, calculated from the Green’s function, equation (4.74), at zero wavevector
k = 0. We work in units of J, the strength of the exchange coupling between spins.
Here, the longitudinal hypefine interaction has the same strength as the exchange
interaction, and the transverse hyperfine interaction is a factor of ten smaller. We
see the lower mode softens to zero in a quantum phase transition and the associ-
ated spectral weight diverges. The middle mode carries most of the spectral weight
throughout the rest of the diagram, except in weak transverse fields where the upper
mode may carry some of the spectral weight.

In general, the RPA modes of the system are obtained by factoring the denominator of
(4.74) numerically. However, in the paramagnetic phase of the system the matrix element
c13 = (1]7%|3) is zero; hence, there is a common factor of E%l — (iw,)? in the numerator and
denominator. This MF mode carries no spectral weight. The remaining equation is quadratic
and may be solved analytically. After removing the common factor, the RPA Green’s function
(4.74) becomes

|c1272Es (Ef; — 2%) 4 |c14|*2E41 (E3, — 22)
Ville12|22E21 (E3, — 22) + |c14|22E4 (E3, — 22)] — (E3, — 22)(E2, — 22)
B 6122 _X(Z)Z
S b+ 2+ (1-Vixl)’

(4.75)

G(k,z) =
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Figure 4.8: The plots above show the RPA modes (left), and their associated spectral
weight (right), of the spin half spin half model with an anisotropic hyperfine inter-
action, calculated from the Green’s function, equation (4.74), at zero wavevector
k = 0. We work in units of J, the strength of the exchange coupling between spins.
Here, the longitudinal hypefine interaction has the same strength as the exchange
interaction, and the transverse hyperfine interaction is a factor of two smaller. We
see the lower mode softens to zero in a quantum phase transition and the associ-
ated spectral weight diverges. The middle mode carries most of the spectral weight
throughout the rest of the diagram, except in weak transverse fields where the upper
mode may carry some of the spectral weight.

RPA Modes (A, =1,A  =1)

Spectral Weight of RPA modes

Intensity

Figure 4.9: The plots above show the RPA modes (left), and their associated spectral
weight (right), of the spin half spin spin half model with an anisotropic hyperfine
interaction, calculated from the Green’s function, equation (4.74), at zero wavevec-
tor k = 0. We work in units of J, the strength of the exchange coupling between
spins. We take the strength of the hyperfine interaction to be the same as the strength
of the exchange interaction. We see the lower mode softens to zero in a quantum
phase transition and the associated spectral weight diverges. The middle mode car-
ries most of the spectral weight throughout the rest of the diagram.
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Figure 4.10: The plots above show the RPA modes (left), and their associated spectral
weight (right), of the spin half spin spin half model with an anisotropic hyper-
fine interaction, calculated from the Green’s function, equation (4.74), at zero
wavevector K = 0. We work in units of J, the strength of the exchange coupling
between spins. Here, the transverse hypefine interaction has the same strength as
the exchange interaction, and the longitudinal hyperfine interaction is a factor of
two smaller. We see the lower mode softens to zero in a quantum phase transition
and the associated spectral weight diverges. The middle mode carries most of the
spectral weight throughout the rest of the diagram.

where x° is given in equation (4.58), and

2 A2 3
. 2|c12|2 2|C14’2 N 2 {1 B 2A,+A;  AA _ 2A7 +A7 (ALJ—)} (4.76)

" EynE}Y  EXLEy  AA 2A 2A2 202 A3
,__ L 4 { CAHAL AAL 3(A244A%) 0<A§,L>]
E}E7  AIA? A A? 8A? A3
c=V,o— L — L
B3 Ej
%_i{l_&_zﬂ_ﬁ(l_ZAﬁ—AL AA| _2A§+Ai) O(AzL)].
A2l A 4N 2A 2A 2A2 2A2 A3

Solving the quadratic equation obtained by setting the denominator of equation (4.75) to zero,
we find the lowest energy RPA mode in Figures 4.7 - 4.13, in the paramagnetic phase of the

system, to be given by

A 1 =V y¥ A
1 _ Al kX0 7,1
2A

We see that this mode softens to zero at the critical field given by equation (4.62), and vanishes
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Figure 4.11: RPA Modes Figure 4.12: Spectral Weight

Figure 4.13: The plots above show the RPA modes (left), and their associated spectral
weight (right), of the spin half spin spin half model with an anisotropic hyper-
fine interaction, calculated from the Green’s function, equation (4.74), at zero
wavevector £ = 0. We work in units of J, the strength of the exchange coupling
between spins. Here, the transverse hypefine interaction has the same strength
as the exchange interaction, and the longitudinal hyperfine interaction is a factor
of ten smaller. The RPA modes and their spectral weight are colour coordinated.
We see the lower mode softens to zero in a quantum phase transition and the as-
sociated spectral weight diverges. The middle mode carries most of the spectral
weight throughout the rest of the diagram.

altogether in the absence of the transverse hyperfine interaction. The second RPA mode is

given by

2 L
E%:A{H—%—;/—Z(ljt%)+0(AAZ’2L>]2. (4.78)
In the absence of the hyperfine interaction, we recover the RPA mode of the spin half transverse
Ising model, given in equation (B.20) of Appendix B, in which case this mode will soften to
zero at A = % With the nuclear spins present, this mode remains gapped at the critical field
given by equation (4.62).
We now make use of our perturbation theory results in Section 4.1 to analyze the low energy

excitation of the system, in the ferromagnetic phase, near the quantum phase transition. We
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expand —g(iw,) = A+ B(iw,)? in the low frequency, low temperature, limit to obtain

2 2 2
_ 2c1,  2c1z  2cqy
Eyy  E3zr Eg

2 2 2

_ 20y 2013 26y

3 3 3 -
EZI E3l E4l

A

(4.79)

Note these expressions contain matrix elements between the first and third MF eigenstates,
absent in the paramagnetic phase of the system. The matrix elements, and the differences

between the low energy eigenstates, are given by (to leading order in %)

H? A? [ H? A?
0 0
CI2%012|:1_E<1+21€)‘| E21 %EZI 1+WIT§_1 (480)
_HA; 0, H?
ey A Ty
2 A2 S A2
0 Z 0 Z
~d 11— (1-22 Ey ~E) |1 1
cu C”[ 4A2( Ai)] e 2A2( +4ALA)]

The superscript zero is to indicate that these are the energy differences and the matrix elements
of the system in the absence of any longitudinal field. The E?is and c?js are given in equa-
tions (4.7) and (4.11), respectively. The corrections above are calculated using the first order
perturbative corrections to the wave functions.

As in the paramagnetic phase, the low frequency spectrum of the system is given by

A
Wy = E\/ 1-ViA. (4.81)

However, A and B are now given by equation (4.79), and we have A = x§*(H) given in equation
(4.71). We now consider the gap in the spectrum at zero wavevector. At the critical field,

defined by Vi—ox°(H = 0) = 1, the expression above reduces to

[ 3 H
Q=55 (4.82)
2VoB|=0 Ac

where we keep only terms linear in H. Recall from equation (4.72) that H is the longitudinal
field enhanced by an anisotropic hyperfine interaction. In the absence of the nuclear spins,
the gap in the spectrum due to an applied longitudinal field at A, is given by @y = \/gH .
This mode in the transverse field Ising model corresponds to the middle mode in Figures 4.7

- 4.13 of the SHSH model. When we include the hyperfine interaction there is a lower energy
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electronuclear mode that softens to zero. It is the gap in this mode due to a longitudinal field

that is given in equation (4.82). Expanding in the limit A;,A | < 1, we find

A? 1 A3 A, |
Blg—o=——+|1+——=2|+0( == ). 4.83
=0 AWJ +2AA§]+ ( A (483)

In the limit A,,A | < A, we find the gap in the spectrum at the critical field to be given by

3A3 A3 H?
~H S | p—— ol — ). 4.84
o] 1 ] v () @8

We see that the gap in the spectrum between the ground state and the lowest electronuclear
level varies linearly with our enhanced field H, and the rate at which the gap opens depends
on the nuclear spins. In the limit A;,A |, — 0, this mode vanishes and it is the middle mode in

Figures 4.7 - 4.13 that will soften to zero at the quantum critical point.

91



Summary
In this chapter, we introduced the spin half spin half model (SHSH)

H = ——ZV 785 — AZS"+A ZFSZ Z (LS7 +1757). (4.85)

This relatively simple model demonstrates the effects of the hyperfine interaction on the trans-
verse field Ising model, and, with the inclusion of a transverse field acting on the nuclear spins,
may be used to illustrate many of the qualitative features of the magnetic material LiHoF4. The
single ion Hamiltonian of the SHSH model can be diagonalized exactly in the paramagnetic
phase of the system. We began by doing so, and gave the electronic and nuclear spin operators
in this basis. In Section 4.1, we introduced a longitudinal field to the system and gave second
order perturbation theory results suitable for analyzing the system in the vicinity of its quantum
critical point.

In Sections 4.2 and 4.3, we illustrated the electronic and nuclear magnetizations of the sys-
tem in the MF approximation. We proceeded to use our perturbation theory results to give
analytic expressions for the magnetizations in the presence of a longitudinal field, and showed
the longitudinal susceptibility of the system is enhanced or suppressed by an anisotropic hy-
perfine interaction.

After exploring the MF results, we turned to the longitudinal electronic Green’s function
of the SHSH model in Section 4.4. Treating the Green’s function in the RPA, we derived
the low energy paramagnetic spectrum and the critical value of the transverse field. We then
used perturbation theory to analyze the susceptibility of the system, and we found that both
the single ion susceptibility, and the longitudinal field itself, are enhanced by an anisotropic
hyperfine interaction with a dominant longitudinal component.

Finally, in Section 4.5, we calculated all the RPA modes of the SHSH model, and their
associated spectral weight, by factoring the RPA Green’s function numerically. We saw that
what would have been the soft mode in the absence of the nuclear spins is now gapped. This
mode carries most of the spectral weight except near the transition, where the spectral weight
is transferred to a lower energy mode that softens completely at the critical transverse field.
This is the primary result of this chapter. We closed the chapter by making use of the basis of

paramagnetic eigenstates to derive analytic expressions for the RPA modes.
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Chapter 5

LiHoF4 in the Random Phase
Approximation

In this chapter, we analyze the longitudinal electronic correlation function of LiHoF, in the
random phase approximation (RPA), making use of the effective low temperature Hamiltonian
derived in Section 2.2. The techniques developed in this thesis, and presented in Chapter 4 for
the simpler spin half spin half model, make such an analysis straightforward. The low energy
excitations in LiHoF, have been measured via neutron scattering experiments by Rgnnow et
al. in [36]. Their data shows that the expected soft mode at the system’s critical point is
gapped. This result was subsequently analyzed using a numerical approximation that includes
the leading order corrections to the RPA in a high density approximation, that is, an expansion
in the inverse coordination number of the system, in [67]. The numerical calculation shows the
gap in the crystal field spectrum caused by the hyperfine interaction, but their is no discussion of
the other excitation modes of the system and their associated spectral weight. Most importantly,
although there is a brief mention of a lower energy electronuclear mode that softens to zero at
the quantum critical point, there is no discussion of this mode. In this chapter, we calculate the
low energy mode that softens to zero, and we calculate the transfer of spectral weight from the
gapped mode to the low energy mode that occurs near the phase transition. A previous RPA
analysis has been carried out on a toy model for LiHoF; in a transverse field by Banerjee and
Dattagupta in [94]. Their work includes only a longitudinal hyperfine interaction, and fails to
capture the full complexity LiHoF4. Most importantly, they neglect the effect of the transverse
field acting directly on the nuclear spins due to a shift in the electronic cloud of each holmium
ion’s 4f electronic cloud caused by an applied transverse magnetic field, and the mixing of
the nuclear spins by the transverse component of the hyperfine interaction. These effects are
crucial in the vicinity of the quantum critical point, as the phase transition is dependent on the

mobility of the nuclear spins. The low temperature effective Hamiltonian used here does not
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suffer from these shortcomings.
We begin by self consistently solving for the expectation value of the 7° operator in the

mean field (MF) Hamiltonian, Hyr =Y ;H 1{/[F’ where

. A oL
Hig =~ 5 & = Vo(w) 55 + By T+ ATTF+ 5.1

with

Vo =CZ [JD Y D% —41,4. (5.2)
j

Recall, that the exchange interaction involves a sum over each holmium ion’s four nearest
neighbours, and in the two by two low energy subspace J* = C,;7,. We assume a long thin
cylindrical sample, consistent with the domain structure of LiHoF, near its phase transition as
discussed in Section 2.1.3, in which case a3D6Z =da’ Y ijz = 11.272, where a = 5.175A is the
transverse lattice spacing. The strength of the dipolar interaction is fl—g = TmK, and the strength
of the antiferromagnetic exchange interaction is J,, = 1.2mK. We see from this that at zero
wave vector the strength of the dipolar interaction is more than 16 times that of the exchange
interaction. The transverse fields, A and A,,, and the hyperfine couplings, A;, A| and A4, are
functions of the physical transverse field B,. All these energies are given in Section 2.2.

In Figure 5.1, we plot the energy levels of the MF Hamiltonian as a function of the physical
transverse magnetic field B,. The upper and lower sets of energy levels correspond to an elec-
tronic spin in line with the MF of the system, and an electronic spin opposed to the MF of the
system, respectively. The two clusters of energy levels in Figure 5.1 stem from the lower two
electronic crystal field excitations plotted in Figure 2.3 of Chapter 2. Each of these electronic
energy levels is split into eight electronuclear levels by the hyperfine interaction, separated by
A, ~200mK. In Figure 5.2, we plot the transverse and longitudinal electronic magnetization,
(J?) = C(7%) and (J*) = Cx+Ly—y . Cxv(T"), along with the transverse and longitudinal nu-
clear spin magnetization. Note that at the phase transition, the transverse nuclear magnetization
nearly saturates at (I*) = % whereas the transverse electronic magnetization, strongly effected

by the crystal field, is far from its saturation value of (J*) = 8.
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4 Mean Field Eigenvalues

Energy (K)
o

Figure 5.1: The plot above shows the energy levels of the effective low temperature mean
field Hamiltonian of LiHoF,, given in equation (5.1), as a function of the physical
transverse magnetic field, B,. We consider a long thin cylindrical, or needle shaped,
sample.

Electronic Spectrum

In this section, we calculate the connected imaginary time ordered longitudinal electronic spin

correlation function (Green’s function for short)
Gi (1) = —(TeT (1) (0)) = —C2(By) (T (2)F 4 (0)), (53)

where J¢ = J¢ — (J?) = C..(1° — (1%)), in order to determine the excitation spectrum of the
LiHoF, system. This function is relevant to the neutron scattering experiments of Rgnnow et
al. [36], with the spectral weight of each excitation mode corresponding to the intensity of

scattered neutrons. The electronic spin operator 7° is given by

a1 o
0 —1

where I3 is the eight by eight identity matrix corresponding to the nuclear subspace. We men-

® 13, (5.4)

tion this to remind the reader we are dealing with the sixteen lowest electronuclear levels of
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Electronic and Nuclear Mean Field Magnetization
6 C T T T T T ]

Mean Field Magnetization

Figure 5.2: The plot above shows the transverse and longitudinal electronic ((J*) and
(J%)), and nuclear (|(I*)| and |(I¢)|), magnetizations of LiHoF,. The magnetizations
are calculated self consistently from the mean field Hamiltonian given in equation
(5.1). We consider a long thin cylindrical, or needle shaped, sample. We see the
nuclear magnetizations, |(I*)| and |(I?)|, saturate near the quantum phase transition
and in the zero field limit, respectively. The electronic magnetizations, (J*) and
(J*), fail to saturate due to the disordering effect of the crystal field.

the Hamiltonian. Transforming to frequency space, in the random phase approximation (RPA),

the Green’s function is given by

CZg(ian)
G (i) = —2——— 5.5
where the unperturbed propagator is given by
8(1) = —(Tx7*(7)7°(0))o, (5.6)

and the subscript O denotes the average is to be taken with respect to the MF Hamiltonian.
In what follows, we will drop the superscript RPA from the Green’s function, as it is to be
understood that we are working in the RPA throughout this chapter.

The interaction is given by V; = CZ [JpD5t — JunYi]. Note that Di* is the Fourier transform
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of the dipolar interaction, discussed in Chapter 3, and

B kea\ _ ke kya\ | k.c kya kya
yk—ZRe[cos (7)6 4 —|—cos< 5 )e 4 } 2cos( 4 ) [cos (7) + cos (7

5.7

is the Fourier transform of the exchange interaction taking into account the four nearest neigh-
bour atoms at (+5,0,—%) and (0,45, 7). We take only the real part of V;, as the imaginary
part vanishes from the Hamiltonian upon summation.

In terms of the MF eigenstates, we define ¢;; = (i|7%|j)o to be the MF matrix elements of

the 7° operator, E;; = E; — E; to be the difference between the ith and jth energy levels, and the
e BE;i
Zy

In terms of these parameters, the unperturbed propagator is given by g(im,) = ¥ ;gij(iw,) +

population factor to be D;; = D; — D;, where D; =

and Z is the MF partition function.

8elOiw, 0, Where

glj(lwl’l#o) |Clj|2D" (5.8)
We will drop the elastic contribution to the unperturbed propagator g,; that arises in the ordered
phase of the system ({7%) # 0) at finite temperatures. This term is discussed in Appendix D. It
vanishes in the limit 7 — 0, and will not effect the calculation of the inelastic spectrum. In the

limit 7 — 0, we find only the lowest eigenstate is populated, hence our unperturbed propagator

becomes
. 2E
—gliw)| =Y lejlP5—t— - L m 4 25 (fon)?, (5.9)
T7=0 j>1 E - ( )
where
2 Cli 2 2 Cli 2
DI e (5.10)
>1 il i>1 E]l

We expect this expansion to be valid for frequencies much less than the minimum gap in the
MF spectrum, |0| < min{E»1(A)} = Ez1(Ac) =~ 80mK. Note that x§° is simply the electronic
component of the static single ion longitudinal susceptibility of the effective low temperature

Hamiltonian given in equation (5.1) in the MF approximation. For LiHoFy4, we have x§*|;in, =
C2x5
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Using the identity

1 1.
Jim = ‘@(}) Tind(x) (5.11)

we may rewrite the unperturbed propagator as

—g(iow, — 0+i0™)

1
T ercl,-\z(w(E—ﬂ)+m[5(Ej —w)—é(E,-1+w)D. (5.12)
o 5

The spectral weight carried by each MF excitation is proportional to the square of the associated
matrix element.

In Figure 5.3, we plot the matrix elements of the electronic spin operator c1; = (1]7%|)
between the ground state and the excited states. We see that the mixing of the lower MF
eigenstates is orders of magnitude smaller than the mixing of the upper eigenstates, with
the exception of the mixing of the ground state with the first excited state. This matrix ele-
ment is included as a dashed line with the upper matrix elements. A rough argument can be
made explaining why matrix elements between the lower eigenstates are small. As the trans-
verse magnetic field is increased, the electronic spin rolls over in the magnetic field, that is,
(T) = (1%) — (T) = (%) + (1), with the T* component of the ground state becoming increas-
ingly large with the applied transverse field B,. Application of the 7° operator to the ground
state flips the x component of the electronic spin. When this is projected onto one of the lower
MF eigenstates there is little overlap, leading to a small matrix element, whereas when it is pro-
jected onto one of the upper eigenstates, which have a T* component predominantly opposite
the applied field, there will be significant overlap.

Plugging the expression for the unperturbed propagator back into the RPA Green’s function,

we find
. 1 —CZ(x§°)?
G(k,iw,) = 1.,y - e .ZZ 2 Vi(x5)* -13)
Y RETE (o2 - T

and the lowest energy mode of the longitudinal electronic spectrum is given by

R
Oy = X_Sz 1— Vk)(éz. (514)

The spectrum softens to zero at a critical field defined implicitly by 1 = V; x;°. In Figure 5.4,
we plot the static (k = 0) longitudinal RPA susceptibility of LiHoF,, along with the minimum

energy gap in the excitation spectrum at zero wavevector, in the vicinity of the quantum critical
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Figure 5.3: The plots above show the matrix elements of the electronic spin operator 77,
with ¢;; = (i|7%| j), for the low temperature effective Hamiltonian for LiHoFy, given
in equation (5.1), in the MF basis. We plot the matrix elements as a function of the
physical transverse field B, (in Tesla). Note the scale of the vertical axis in the plot
to the left is three orders of magnitude smaller than that of the plot to the right.

point. We see that the susceptibility diverges, and the gap softens all the way to zero, at the
quantum critical point. Note that the susceptibility shown in Figure 5.4 is the susceptibility in a
long thin cylindrical sample consisting of a single domain. As discussed in Section 2.1.3, in a
sample consisting of multiple domains the susceptibility in the ferromagnetic phase is constant,
and is dominated by the motion of the highly mobile domain walls.

The excitation mode given in equation (5.14) is the lowest energy mode of the RPA spec-
trum in the vicinity of the quantum critical point. The other modes of the spectrum may be
found numerically by looking at the zeros of CZZZG*1 = ;—, + Vi, where g is the unperturbed
propagator given in equation (5.9). At T = 0 the unperturbed propagator has poles located at
the energy difference between the ground state and each excited state of the MF Hamiltonian.

The effect of the interaction is to shift the location of these poles. Explicitly, we find

Z}iz ’Clj|22Ej1 Hs;éj(EsZL — (iwn)?)
sz}iz |c1j122E )1 HS#j(Eszl — (ian)?) — H}ig( 12'1 — (ian)?)

C.2G(k,iw,) = (5.15)
The poles of the Green’s function are given by the zeros of the polynomial in the denominator
of (5.15). Numerically, finding the poles can be quite time consuming because near a pole
g~ ﬁ, and, if o; = 2|cy;|?E;; is small, a very fine frequency scan must be made in order
to see the divergence. It is much faster to consider the denominator of equation (5.15) as a
continuous function of frequency (i@, — z) and find the zeros of the polynomial. Points where
|1 j|2 vanish correspond to points where a pole in the RPA Green’s function carries no spectral

weight. We see this by noting that if a factor of |c; j|2 is zero then there is a common factor
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Figure 5.4: The plot above shows the zero wavevector longitudinal susceptibility of
LiHoF, in the random phase approximation, along with the lowest energy mode
(at zero wavevector, k = 0) in the electronic (RPA) spectrum, as a function of the
applied transverse magnetic field B, (in Tesla). We consider a long thin cylindrical
sample. We see that the susceptibility diverges, and the lowest energy mode softens
all the way to zero, at the quantum critical point.

of EJ2.1 — (i@,)? in both the numerator and denominator that cancels reducing the degree of the

polynomial. Setting ¢ = z*> = (i@, )?, we find the zeros of the polynomial

16 16
0(t)=Vi Y lei;P2En [[(EZ —1) — [](E —1). (5.16)
j=2 s£] j=2

In Figure 5.5, we plot the full RPA spectrum at zero wavevector (k = 0) as a function of
transverse magnetic field. At zero field, we see the upper and lower bands, corresponding to
electronic spin up and electronic spin down, respectively, split into clusters of eight by the
inclusion of the nuclear degrees of freedom. These states are then mixed by the transverse
field. In the absence of the nuclear spins, the middle mode that splits off from the group would
soften to zero in a quantum phase transition. We see that the mode is gapped by the nuclear

spins; however, the lowest energy electronuclear mode softens to zero.
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RPA Spectrum of LiHoF4

Figure 5.5: The plot above shows the RPA spectrum (in Kelvin) of the low temperature
effective Hamiltonian for LiHoF, given in (5.1), at zero wavevector, as a function
of the transverse magnetic field B, (in Tesla).

We now consider the spectral weight of the RPA modes. We may rewrite the Green’s

function as
Y20 e P21 Tz (Ef — 22)

s, [<z—E,i’><z+E,f>}

CZ2Gi(z) = , (5.17)

where E ,f denotes the p'* RPA mode. Note that the Green’s function has the form CZ’ZZGk (z) =

%, where P(z) and Q(z) are polynomials. Performing a partial fraction decomposition (as-

suming no degenerate modes) yields

) R PE) 1 P(-E}) 1
C. Gi(2) —p; {Q’(E,f) ) OED (z+E,f)}’ (5.18)
where

16

PED) = P(-E]) = Y. P25 T |3 - (61 (5.19
=2 iy

O'(ED) = —0/(—E]) =2/ T] [<E,f>2 _ (E,ﬁ)z] |

S#p
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The spectral density is given by (at 7 = 0)
) 2n
pe(@) = ~2Im[Gy(@+i0")] = T Y (05| p) [6<w ~ED)- 6<w+E,f>} (520
p

where |p) denotes a many body RPA eigenstate of the Hamiltonian. Taking the imaginary part
of the RPA Green’s function, we find that
15 ( P)

E
o) = 21C> k
pk( ) ZZp:] QI(E]f)

[6(w—E,f)—5(w+E,f)}. (5.21)

In Figures 5.6 and 5.7, we plot the intensities of the RPA modes of the longitudinal Green’s
function. Figure 5.6 shows the soft mode Ej, along with the upper set of modes Eg to Eys.
The modes not shown carry no spectral weight. We see that away from the phase transition,
the spectral weight is carried by the upper electronuclear levels, which are plotted in Figure
5.7. In the vicinity of the quantum critical point, the spectral weight is transferred to the lowest
electronuclear level. The spectral weight of this mode diverges at the quantum critical point,

where the mode softens to zero.

Spectral Weight of the RPA Modes of LiHoF4

—F

Eq \
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0.5

Figure 5.6: The plot above shows the spectral weight of the RPA modes (E; and Eg to
E\5) of LiHoF,, calculated from the longitudinal Green’s function (5.15), at zero
momentum & = 0, as a function of the physical transverse magnetic field field By
(in Tesla). We see the spectral weight of the lowest energy mode diverges at the
quantum critical point. Above B, ~ 3T, most of the spectral weight is carried by
Eg, except near the phase transition. The modes not shown in the figure carry no
spectral weight.
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Spectral Weight of the Upper RPA Modes of LiHoF4
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Figure 5.7: The plot above shows the spectral weight of the upper RPA modes (Eg to
E\5) of LiHoF,, calculated from the longitudinal Green’s function (5.15), at zero
momentum k = 0, as a function of the physical transverse field B, between 17 and
3.5T. Above By ~ 3T, Ey is the dominant mode. The peaks in the intensities, in
order of decreasing amplitudes, correspond to Eg, Eo, ..., E5.

In addition to considering the RPA modes as a function of transverse field, we may examine
how they vary in momentum space. We do so by tracing out the triangle [0,0,0] — [£,0,0] —
[£,0,2] — [0,0,0], at the critical MF, AY = 5.33T. At zero momentum, the spectral weight of
the lowest mode diverges. As we vary the momentum, the weight carried by this mode decays,
and it is the upper electronic mode that carries the spectral weight. Note that the eighth RPA
mode, which carries the spectral weight away from k = 0, varies extremely rapidly as |%| — 0.

This is a result of the shape dependence of the dipole-wave sum near \7€| =0.
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RPA Spectrum of LiHoF4 kz
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Figure 5.8: The plot above shows the RPA spectrum of LiHoF, in momentum space, at
the critical mean field A2 = 5.33T, calculated from the longitudinal Green’s func-
tion given in equation (5.15). The central mode, separated from the rest, carries the
spectral weight away from k = 0. Near k = 0, spectral weight is transferred to the
lowest energy mode.

Spectral Weight Spectral Weight

Spectral Weight 3 3
3 ——mode 1 ——mode 1
——mode 1 mode 8 mode 8
mode 8 5 o
32
‘0
3
1 1 1
0 0 0
0 0.5 1 0 0.5 1 1 0.5 0
k=[Z2,0,0] k=1[%,0, %] k=[Zz,0,Zz]

Figure 5.9: The plot above shows the spectral weight of the RPA modes of LiHoF, in mo-
mentum space, calculated from the longitudinal Green’s function given in equation
(5.15), at the critical mean field, Ag =5.33T.

Summary

In this chapter, we examined some of the properties of the longitudinal Green’s function (rele-
vant to neutron scattering experiments) for electronic spins in LiHoF4, using the random phase
approximation (RPA). To begin, we solved the mean field (MF) Hamiltonian self consistently,
and illustrated the MF energy levels, as well as the electronic and nuclear magnetizations.

In Section 5.1, we considered the longitudinal electronic Green’s function in the low energy
limit, as a function of the transverse magnetic field. We extracted the static (zero wave vector)
longitudinal RPA susceptibility, and calculated the energy of the lowest energy excitation in the
vicinity of the quantum critical point. We then considered the full RPA Green’s function, and
extracted the full RPA spectrum, along with the spectral weight of each mode. In the absence
of the hyperfine interaction the dominant electronic mode softens to zero in a quantum phase

transition. We found that the hyperfine interaction gaps this mode, with spectral weight being
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transferred down to the lowest electronuclear level, which softens to zero. A calculation of
this low energy soft mode and its associated spectral weight does not exist in the literature. In
addition, we examined the RPA modes in momentum space near the quantum critical point. We
found that in momentum space the spectral weight carried by the lowest electronuclear level

decays, and the spectral weight is transferred back to the upper gapped mode.
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Chapter 6

Field Theoretic Treatment of Quantum

Ising Systems

In this chapter, we develop a field theoretic treatment of quantum Ising systems with an arbi-
trary single ion Hamiltonian. This formalism is suitable for a renormalization group treatment
of such systems. Furthermore, the formalism allows for diagrammatic techniques to be used
to incorporate the effects of fluctuations in quantum Ising systems perturbatively throughout a
system’s phase diagram, where the perturbation parameter is the inverse coordination number.
This approximation is referred to as the high density approximation by Brout, who introduced
itin a 1959 paper on random ferromagnetic systems [60, 61]. The formalism is well suited for
dealing with systems such as LiHoF4 because we are able to easily include the nuclear degrees
of freedom of the holmium ions, and, due to the dominant dipolar coupling between electronic
spins, the effective coordination number is large.

We obtain a field theory for a quantum Ising system by making use of the well known
Hubbard-Stratonovich (HS) transformation. Miihlschlegel and Zittartz (MZ), in 1963, were
the first to apply the HS transformation to an Ising system [95]. They considered a spin half
Ising system in a longitudinal applied field, and, after applying the the HS transformation, they
used a variational approach to analyze the resulting free energy. MZ were only concerned with
the static properties of the system. They did not consider the time dependence of the quantum
spin operators. In this thesis, we consider the dynamic properties of a quantum Ising system
with an arbitrary single ion Hamiltonian, and develop a diagrammatic method for calculat-
ing corrections due to spatial and temporal fluctuations, rather than employing the variational
approach of MZ. We will say more on this subject after a more general discussion of diagram-
matic perturbation theory in the following paragraphs. In 1975, the HS transformation was
applied by Young to the spin half transverse field Ising model to illustrate quantum effects in

the renormalization group approach to phase transitions [58]. We fully develop Young’s ap-
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proach, generalizing to systems with an arbitrary single ion Hamiltonian, and thereby derive a
field theory suitable for both renormalization group calculations, and for calculating the effect
of fluctuations away from a system’s critical region. We note that Young’s work was carried
out independently of the more thorough work of Hertz on quantum phase transitions [31].

Diagrammatic perturbation theory has proven to be an invaluable tool in the study of many
body systems. The book of Mattuck is a good introduction to the use of diagrams in Bose
and Fermi systems [96]. Spin systems are complicated by the fact that the spin operators do
not commute or anticommute, so the Wick reduction theorem does not apply in the usual way.
Building on work on random ferromagnetic systems, Brout introduced a diagrammatic pertur-
bation theory for ferromagnetic spin systems in 1960 [60, 61]. The theory was subsequently
developed by Brout, Englert, Stinchcombe, and others, and is presented in two 1963 papers
[97, 98]. The diagrammatic perturbation theory is analogous to that used in Bose and Fermi
systems, with an important difference - each vertex corresponds to a spin cumulant, the ana-
logue of a propagator in Bose and Fermi systems, and each line corresponds to an interaction
between sites. Englert refers to the diagrams as the dual of Feynman diagrams [97]. Brout’s
diagrammatic perturbation theory is outlined in Appendix C.

A theory similar to Brout’s, corresponding to a rearrangement of the terms in Brout’s the-
ory, was introduced by Horwitz and Callen [99, 100]. Brout’s theory, treated in the random
phase approximation (RPA), suffers from unphysical behaviour in the ordered phase of the
system. Brout accounts for this by enforcing a constraint on the total number of spins in the
system [61], thereby introducing a chemical potential into the equations. The essential dif-
ference between the Horwitz and Callen theory, and the theory of Brout, is that Horwitz and
Callen renormalize the vertices of their theory (the spin cumulants) by summing over all tree
level diagrams, thereby working around the mean field (MF) ground state and avoiding any
unphysical behaviour. Horwitz and Callen do not introduce a chemical potential in their work.
We note that a diagrammatic perturbation theory equivalent to that of Brout was developed
independently by Vaks, Larkin, and Pikin, and published in a 1968 paper [101].

In this thesis, we avoid the unphysical behaviour in the theory of Brout by taking the inter-
action to be V = —%Zi# Vij(8F = (8%0) (8% — ($%)0), rather than V = —%Zi# Vi;jSiSs, where
the subscript zero indicates the average is to be taken with respect to the MF Hamiltonian. This
is equivalent to following the renormalization procedure of Horwitz and Callen. We apply the
HS transformation to the interaction, and trace over all spin variables to obtain an effective
field theory. This scalar field theory is then treated using the usual Feynman diagram methods.
We find the results to be equivalent to those of the Brout theory, which has been applied to the
transverse field Ising model in a series of 1973 papers by Stinchcombe [26, 62, 63]. We find
the formalism presented here to be conceptually simpler than the formalism of Brout. Further-
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more, the field theoretic formalism presented here allows for a renormalization group treatment
of a system’s critical region. In Brout’s theory, the behaviour of a system in its critical region
is plagued by unphysical divergences.

Brout’s formalism has only been applied to systems with simple single ion Hamiltonians.
This is because the spin cumulants, which correspond to the vertices of the diagrammatic the-
ory, become increasingly difficult to calculate as the complexity of the single ion Hamiltonian
is increased. We overcome this difficulty by working in a basis of MF eigenstates. By doing so,
we are able to deal with systems having arbitrarily complicated single ion Hamiltonians, and
systems having additional degrees of freedom at each atomic site, such as the nuclear spins in
LiHoF,4. The MF basis is discussed in Appendix A. In order to calculate the spin cumulants in
the MF basis, we make use of a general reduction scheme of Yang and Wang [102]. The same
reduction scheme is presented for spin operators in the appendix of the earlier paper by Vaks,
Larkin and Pikin [101]; however, except for simple spin systems such as the Ising model in a
longitudinal field, the reduction of spin operators is of little practical utility. The reduction of
spin operators working in the MF basis can be done quite generally, and we have carried out
the reduction for cumulants of up to four spin operators in Appendix E.

The reduction of MF basis operators has been developed into a general formalism for the
analysis of magnetic systems with complicated single ion Hamiltonians by Wang and collab-
orators, and is reviewed in a 1987 paper by Wentworth and Wang [103]. The result of the
formalism is a high temperature series expansion that reduces to MF theory in the zero temper-
ature limit. High temperature series expansions are of little use in the examination of quantum
critical behaviour. We note that the formalism of Wang et al. is complicated by the multiple
site indices appearing in the spin cumulants associated with each vertex in the diagrammatic
version of the theory [102, 103]. In Section 6.3.1, we show that it is only necessary to consider
cumulants of spins at a single site. Furthermore, in the formalism presented by Wentworth and
Wang, MF operators are grouped according to their dependence on imaginary time 7. The field
theoretic formalism presented in this thesis avoids this complication by decoupling the interac-
tion between spins with a HS transformation, which leads to spin cumulants with no repeated
T indices.

Series expansion techniques for the zero temperature behaviour of spin half transverse field
Ising systems are investigated in a 1971 paper by Pfeuty and Elliott [104]. The authors make
use of perturbation theory to calculate the static properties of the model, with the perturbation

parameter being the ratio of the strength of the exchange interaction to the strength of the

J
> A
point, where the value of the perturbation parameter is one. The diagrammatic techniques

transverse field or its inverse. These techniques break down near the quantum critical

used in this thesis go beyond the series expansion techniques of Pfeuty and Elliot [104] by
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allowing for the calculation of the dynamic, rather than static, properties of a quantum Ising
system. Furthermore, the field theory allows for a renormalization group treatment of the
critical behaviour.

We have discussed the series techniques of Wang and collaborators, and of Pfeuty and El-
liot, and have explained why, for the analysis of quantum critical behaviour, they are inferior
to the work carried out in this thesis. We now return to the work of Miihlschlegel and Zittartz
(MZ) [95], and elaborate on the differences between their work, related approaches, and the
work carried out in this chapter. In the field theoretic treatment of MZ, the free energy of the
spin half quantum Ising model was evaluated by assuming a quadratic form for the variational
function determining the energy of the fluctuating HS field [95]. This approach allows for
the effect of fluctuations to be incorporated through the variational parameters in the quadratic
function; however, because the theory is Gaussian in nature, interactions between the fluctua-
tions are ignored. In principle, it is an improvement over the standard Gaussian approximation
because the parameters in the theory are renormalized. However, in practice, the variational
parameters turn out to be exactly what you would find by calculating the parameters from the
microscopic Hamiltonian. MZ also consider the leading order correction to the Gaussian re-
sult; however, this is only possible due to the simple nature of the spin half Ising model in a
longitudinal field that they base their work on.

Miihlschlegel and Zittartz make contact with the work of Brout by introducing a Lagrange
multiplier to enforce a constraint on the total number of spins in the system, [N — ¥;(5%)%] =0.
We note this constraint is only appropriate for spin half systems. Adding this constraint to
the Hamiltonian corresponds to shifting the interaction between spins, V;; — V;; +2u6;;, or,
in momentum space, V; — Vi +2u. The renormalized interaction, which we will discuss in

Section 6.4 of this thesis, is then assumed to have the form

: Vii+2u
T (io, =0) = =0, (6.1)
Z,:’ K ) Zk“l—(VkJrZLL)%éZ

where x° is the longitudinal single ion susceptibility of the system. The assumption (6.1),
which determines the Lagrange multiplier i, is somewhat mysterious in the work of MZ.
They simply state that it leads to the solution of Brout. We will have more to say about the
nature of this assumption in the following paragraphs. The resulting expression for the free
energy obtained by MZ is similar to the result to be given in equation (6.61) with the following
caveats. First, in equation (6.61), the time dependence of the quantum operators will be taken
into consideration. In a quantum system, time and space are intrinsically linked, and the time
dependence of operators cannot be ignored. To obtain the expression for the free energy given

in equation (24) of Section V of the MZ paper [95], the summation over Matsubara frequencies
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in equation (6.61) must be dropped, and g(i®,) must be replaced with g(iw, = 0) = x° (the
longitudinal component of the MF susceptibility). Second, the Lagrange multiplier should
be set to zero because, in this thesis, we work with the unconstrained theory. With u = 0,
the result is equivalent to the results of Horwitz and Callen [99]. MZ have compared the
results of Horwitz and Callen, and those of Brout, in the high temperature limit (3Vy < 1), and
found that differences due to the presence of the Lagrange multiplier u appear at sixth order in
perturbation theory. The results of the theory, with or without the constraint u, would be the
same if the calculation was done exactly (to infinite order in perturbation theory). Constraining
the total number of spins in the system by introducing tt will improve the results of the theory
obtained perturbatively; however, the work of MZ demonstrates that the improvement only
occurs at high orders of the perturbation parameter.

We now return to assumption (6.1), and discuss its significance. Making use of the identity

1 ng
N L= Z =X 6.2)
k

where x* is the longitudinal susceptibility in the random phase approximation, and x; is the

single ion susceptibility, we may rewrite assumption (6.1) as

1 Vi
— =qQ, (6.3)
N; 1= (Vi —a)x§

with oo = —2u. As discussed in [105], equation (6.3) is one of the defining equations of
the correlated effective field (CEF) approximation, which was introduced by Lines in 1972
[106-108]. Note that our definition of «a differs from that of Lines by a factor of Vj, that is,
o = Vo QLines- Following [105, 107], we now proceed to outline the CEF approximation.

To begin, we write the Ising Hamiltonian as

%———ZSZ[ZV”( (8%) + 8% — (Sj))}. (6.4)

i J#i

The fundamental assumption of the CEF approximation is that, because spins on different
sites are correlated, S5 — ($5) = A;;(S7 — (S})). Making use of this approximation, we find the

effective field acting at each site to be

§V( 1455 - ()], 65

In a spin half system, where (Sf)2 = 1, we may drop the term involving S? from equation (6.5)

110



because it simply contributes a constant shift to the ground state energy of the Hamiltonian.
The effective field may be divided into its static and fluctuating parts by taking (S5) = (S%)o+ ¢;,
where (S%) is determined from the static field Hamiltonian

My = § (Vo — ) (S0, (6.6)
with

o= ZVUAU (6.7)
J

being an unknown parameter representing the correlations with neighbouring spins, or, equiv-
alently, a constraint on the total number of spins in the system. To leading order in the fluctua-

tions, consideration of the RPA susceptibility leads to the condition

1 Vi
szk"l—(vk—a)xgz —¢ ©.8)
Equations (6.6) and (6.8) may be used to solve self consistently for & and (S%)¢. These equa-
tions are identical to the RPA equations of the Ising model treated in standard MF theory aug-
mented with a constraint on the total number of spins. This correspondence is noted by Lines
in [107]. Lines also notes the equivalence of the CEF approximation and the Onsager reaction
field approach. As noted in [105], the CEF approximation may be viewed as a renormalization
of the single site susceptibility. That is, we define the renormalized single ion susceptibility to
be
X

2o 6.9
ST 2

and the RPA susceptibility then follows from the usual equation

2z
X

c 6.10
1 — %7V (6.10)

X =
Thus far, we have only considered static properties of spin systems. Spin dynamics within
the CEF approximation are discussed in a 1975 paper of Lines [109]. Corrections to the
dynamic susceptibility are obtained by replacing x;° with its dynamic counterpart, that is,

x5 — x5 (w) = —g(w). The dynamic susceptibility in the correlated field approximation is
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simply given by (in the Matsubara formalism)

X (o) = =Gy (iwy) = 1+g(_if)il;(°"2_ ) (6.11)

Correlations between spins lead to a static renormalization of the interaction between spins in
the RPA expression for the susceptibility.

We have briefly outlined the CEF approximation, or, equivalently, an improvement of stan-
dard MF/RPA theory via the introduction of a constraint on the number of spins in the system.
We will now discuss its application to the dipolar ferromagnetic insulator LiHoF,, and the im-
provements offered by the techniques developed in this chapter. The CEF approximation has
been used to study the static transverse susceptibility of LiHoF, in the absence of a transverse
magnetic field, by Page ef al. in a 1984 paper [110]. Page et al. find that CEF theory offers a
significant improvement over standard MF theory in their calculation of the transverse suscep-
tibility near the system’s critical temperature; however, the correlation parameter goes to zero
in the zero temperature limit, thus reducing the theory to the standard RPA. It would be inter-
esting to see the CEF approximation applied to the LiHoF, system in a transverse field at zero
temperature where the fluctuations are more significant. The main advantage of the high den-
sity approximation is that it allows, in principle, for systematic improvements in the calculation
by carrying the perturbation theory calculation to higher orders. Admittedly, this comes at the
cost of a considerable amount of straightforward but tedious algebra. The CEF approximation
allows for the effect of interactions between fluctuations to be accounted for to leading order
in a simpler manner, particularly at finite temperatures. Another advantage of the formalism
developed in this chapter is that it provides a rigorous method for obtaining an effective field
theory from the underlying Hamiltonian, thus allowing for a renormalization group treatment
of a system’s critical behaviour. We mention, for the sake of completeness, that Stinchcombe’s
work on the high density approximation in spin half transverse field Ising systems has been
applied to LiHoF, in a paper of Page et al., separate from their CEF work [111]; however,
in this paper, the approximations used in the calculations are very rough, meaning that this
application of the high density approximation should not be taken seriously.

The CEF approximation does not take into consideration any time dependence of the cor-
relation parameter &. An approximation, similar to the CEF theory, that makes use of the high
density approximation of interest in this chapter, has been developed by Jensen [68, 112]. In
Jensen’s formalism, & becomes a time dependent parameter. In accord with the work of Jensen,
our discussion will be given in terms of the imaginary time Green’s function G’ (i®,) discussed

in Appendix D. Jensen introduces an effective medium coupling K (i®,) that renormalizes the
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interaction between spins. The effective medium coupling is defined by

Vi

o Gilioy) 1
Klion) = N)k: “Gliwo,) ~ N ; L+ [Vi — K (ion) | G(in)”

(6.12)

where

Gliw,) = ]lVZGk(iw,,) (6.13)
k

is the single site Green’s function of the interacting theory. Equation (6.12) is a dynamic
version of equation (6.8) of the CEF approximation, with the single ion Green’s function
x5° = —g(0) in the MF approximation being replaced with the exact single site Green’s func-
tion of the interacting theory given by equation (6.13). Note that G(i®,) is exact, and contains
all corrections to the MF Green’s function g(i®,). Jensen proceeds by expanding the single
sight Green’s function in powers of the inverse coordination number (the high density approxi-
mation), and solving the resulting equations self consistently. Jensen refers to the high density
approximation without introducing the effective medium as the unconditional cumulant expan-
sion. In both the unconditional cumulant expansion, and the effective medium theory of Jensen
[68, 112], terms involving the fourth order cumulant contribute corrections of order %, terms
involving the sixth order cumulant contribute corrections of order z% and so on. In Section 2
of his 1994 paper on HoF3 [112], Jensen states: “The unconditional cumulant expansion ac-
counts correctly for the fourth-order cumulant term in the [single site Green’s function], but an
analysis of the sixth and higher-order terms shows that this procedure does not lead to a good
estimate of the higher order contributions in the single-site series.” We take this to mean that to
order % the considerably more complicated effective medium theory does not offer any advan-
tage over the formalism developed in this chapter. For further discussion of Jensen’s effective
medium theory, and its comparison with alternative formalisms, see Section 7.2 of the book by
Jensen and Mackintosh [65].

The effective medium theory, to order %, has been applied to LiHoF, by Jensen in the 2007
paper of Rgnnow et al. [67]. Rgnnow et al. use a set of crystal field parameters, and choose a
value of exchange interaction that provide a good fit to the low temperature phase diagram. We
use the same set of crystal field parameters throughout this thesis. Rgnnow et al. proceed to
calculate the dominant mode in the low energy excitation spectrum at 7 = 0.31K and show that,
after scaling the calculated energies by a factor of 1.15, it agrees with the spectrum measured
via neutron scattering experiments. They note this crystal field mode is gapped by the presence
of the hyperfine interaction, with critical fluctuations deriving from a lower energy pole of the

MF Hamiltonian, although this is not shown in their work.
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In Chapter 5, we have provided an analysis of all the RPA modes of LiHoF,, and their
associated spectral weights, which is not currently present in the literature. The formalism
developed in the current chapter is suitable for obtaining corrections to the RPA results, and, at
order %, it should be equivalent to the more complicated effective medium theory. In Chapter
7, we use the formalism developed in the current chapter to calculate the zero temperature
magnetization of LiHoFy, this being the simplest application of the theory. A calculation of the
spectrum and the phase diagram, and its comparison to the effective medium theory, would be
of interest.

We begin the current chapter by using a heuristic model to illustrate the effect of exchange
anisotropy in a Heisenberg magnet in Section 6.1. We clearly show how the Goldstone modes
gain mass when anisotropy breaks the rotational invariance of the system. Then, in Section
6.2, we discuss first order phase transitions using a Landau energy function. This is relevant
since, as will be shown in Section 6.3, additional degrees of freedom beyond spin half may, in
principle, lead to a cubic term in the energy function, resulting in a first order phase transition.
Finally, in Section 6.3, we treat a quantum Ising system with an arbitrary single ion Hamilto-
nian more rigorously using the HS transformation, deriving a diagrammatic perturbation theory

suitable for incorporating the effects of fluctuations.

Field Theory: From Heisenberg to Ising Systems

Consider the classical Heisenberg model with uniaxial anisotropy in a magnetic field transverse

to the easy axis of the system

H =——ZJ (r—r')S(r)S*(r' ——ZA (r=r)(S*(r)S* (") + 8 ()" (r)) (6.14)

rr’ rr’

— B, ZSX +/.LZ

We consider a continuous spin variable §, with the final term enforcing a constraint on the size
of the spin, that is, it ensures that the maximum magnetization of the system is bounded. Taylor

expanding S (r') around the point r, and an integration by parts, leads to a soft spin model

1 1 1 1
BH = / d3*[ L (VS%)? ErgS§+ErL((VSX)%(VSy)Z)Jr5r§(5§+s§)+zuos4—ASx
(6.15)

where $* = ((5)?)2. Here the size of the spin, or the maximum magnetization, is unbounded,

but there is an energy penalty for unphysically large values of the magnetization. Our goal
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starting with equation (6.14) is to motivate the origin of the soft spin model. In what follows,
we ignore the physical parameters in (6.14), and work with the parameters in the soft spin
model instead. We may assume, with out loss of generality, that r, = 1. This corresponds to a
re-scaling of the spins (§° — \/LESZ). This model is meant to illustrate the effects of anisotropic
exchange in a Heisenberg ferromagnet. In particular, we will consider the limit J | (r — r ) —0,
in which case we have an Ising system. It is a simple matter to include nuclear spins in such a
theory; however, the resulting equations become quite cumbersome, and are not of interest to
us here. The effect of the hyperfine interaction will be included when we treat quantum Ising
systems in Section 6.3.

Minimizing the homogenous part of the Hamiltonian density with respect to the spins,

Bh= %rganL%ré(S?chSi)Jr%uoS“—ASx, (6.16)
gives the MF magnetization, (S)yr = (my,my,m;). We assume the system is anisotropic (7 #
r&) and take up > 0. The two relevant parameter regimes are the paramagnetic regime, where
rf),roL > 0, and the ferromagnetic regime, where rf),r& < 0. We ignore all other parameter
regimes as they are not physically relevant to the systems of interest in this thesis. In the
paramagnetic regime, m, = my, = 0, and the transverse magnetization satisfies A = mx(r({ +

uom)zc). In the ferromagnetic regime, my = 0, m, = ﬁ, and the total magnetization is given

0 0

2_"N
by m” = o

Paramagnetic Regime

We expand our spins around the MF, S=im+ 5 , where (5 = (@x, 9y, ¢;) are the fluctuations,
and m = (my,0,0) is the MF magnetization. This leads to an effective Hamiltonian for the

fluctuations in the magnetization,

BH = BHyr + /d3r {E(roL + 3ugm?) 92 + E(r(} + uom)zc)(])y2 + 5(;’8 +uom?)¢?  (6.17)

L ((F04 (002 ) + (V02 o, (0F + 3 +02)+ 25

where constant terms are included in Hy;r. Note that terms linear in the fluctuations vanish, as
is to be expected as we’re looking at fluctuations around the MF (expanding about a minimum).
The presence of the cubic term is a reflection of the fact that the transverse field breaks the
rotational symmetry in the x direction. The Hamiltonian remains symmetric under ¢, — — ¢,

and ¢, — —¢@,, hence any non zero minimum in these fields will be degenerate. The MF
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Hamiltonian BHyr(A) = [ dﬁ[@mﬁ + “m} — Am,] doesn’t contain fluctuations; however,
it is still a function of temperature and the transverse field, and is important for calculating
thermodynamic quantities.

The effect of the transverse field is apparent in equation (6.17). We see that as the transverse
field is increased, and hence the transverse magnetization, the energy cost of the fluctuations
increases. Assuming we are in the Ising universality class, with [r§| > |ry |, in the absence of the
transverse field, the system would go critical (in the Gaussian approximation) at r’é(TcO) =0.
The transverse field suppresses the critical temperature. The system now goes critical when
7§ (T2)| = upm?, with T < T2,

In Fourier space, the Gaussian component of the function is given by

11

BHy = 37 (ro + 3ugm? +r k202 + (rg- + uom?> + ka)d)yz + (r5+ uom;, + k)97 |.
k

(6.18)

We identify the coefficients of the fields with the inverse of the connected two point correlation
functions S*V (k) ~ % x"V(k), x being the susceptibility (see Appendix D for a discussion of

the susceptibilities and correlation functions). We find

1

§) = ro +3ugm? +r k? (6.19)
1

§7) = r& +uom? +r k2

1
T e
Alternatively, the transverse susceptibility,
2= 0) = 2" _ P (6.20)

OBy (rg +3uom?)’

is easily obtained by differentiating the equation for the magnetization, A = BB, = mx(ré +
upm?). Note that when the longitudinal susceptibility goes critical at ry = —ugm? the transverse

susceptibilities remain finite.
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Ferromagnetic Regime

We now expand our spin about the MF magnetization in the ferromagnetic reglme m—+me,

with 7 = (my,0,m;), and m = |i|. We find

2 2
BH = BHyr + / d3?{2u0mxmzm2¢x¢z + m? (uom§ + 3ugm? + rg) o+ ’%(VW)Z (6.21)
2

" ) m 2 m
+ 5 (uomz + 3ugm? + r&) 02+ —r (Vo©)> + > ( ) ‘Py —”L(Vfl)y)

+ =l (3%)?

+ toman 9:(97 +67) + uomxm3¢x<¢§ +07) + uomon’ 93 + uomen 97 +

where Hyr contains constant (homogenous in space) terms. Again, there are no linear terms
as we are looking at fluctuations around the ground state. The inclusion of a factor of m in
our definition of the fluctuation means that the (5 field represents only the direction of the
fluctuation. We see that the symmetry of the system is broken in both the x and z directions;
however, the Hamiltonian remains invariant under the transformation ¢, — —¢,.

In the Gaussian approximation, transforming to momentum space and dropping the con-

stant MF component, the Hamiltonian is given by

m? 1

BHy= "+ Kzuomg + k2) o2+ (roL — 75+ 2ugm? +r Lk2> 02 (6.22)

+ (}’é — I’(z) + I’J_k2> ¢y2 + 4M0mxmz¢x¢z} .

In zero transverse field this reduces to

m? 1 5 )
BHOZ?V {<Z\rz|+k)¢z ( —r5+rik >¢4 (6.23)
k

where qﬁ =02+ ¢y2. The two point correlation functions are,

-2 m—2

Stk)y= —— . 6.24
(k) PR (6.24)

m

S0 = e

In the absence of anisotropy, the transverse correlation functions would have poles at k = 0,
corresponding to the Goldstone modes of the system. The effect of anisotropy is to give mass

to what were the Goldstone modes.
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First Order Phase Transitions in an Ising System

In the Landau theory of phase transitions, the standard approach is to write down an energy
function for the order parameter consistent with the symmetries of the system. In an Ising
system, this is typically taken to mean that the cubic term in the theory should be neglected.

However, a cubic term may be included by defining the function piecewise

%Zk(ro+k2)52+%053+%54 S<0

BH = :
S Li(ro+k*)S* — 8083 054§ 0

(6.25)

A linear term is excluded because for ry > 0 we want the function to have a minimum at S = 0.
Equation (6.25) is a valid function, and is symmetric under the transformation S — —S despite
the cubic term. In Section 6.3.3 we will see that in a quantum system with more than two energy
levels at each site, a cubic term may be present. In the formalism developed in Section 6.3,
there will be either a plus or a minus sign associated with the cubic term that arises from a sign
ambiguity in the Hubbard-Stratonovich transformation. If the cubic term is present, choosing
to work with one sign or the other amounts to specifying in which direction the system will
order. In what follows, we will choose the minus sign.

We consider a scalar field theory of the form

1 u
BH = 5 Y (ro+k)s* %53 + Zos“. (6.26)
k

Minimizing the homogenous (k = 0) part of the Hamiltonian yields the MF equation,
m(rg — gom+ uomz) =0, (6.27)

where m = (S)yF.
Consider rg > 0. If g(z) < 4ugry, the potential has a single minimum at m = 0. As ry is

reduced, the potential develops an inflection point at m = Zg—;o when g% = 4uprg. Reducing ry

further causes a secondary minimum at m = 8oV 86— W to be lowered and shifted to the
right (assuming gg > 0). As rg is reduced, the secondary minimum will become degenerate
with the minimum at m = 0, at which point the system undergoes a first order phase transition.
When ry = 0, m = 0 becomes an inflection point and m = i—g becomes the unique global min-
imum. The point where the two minima are degenerate occurs with m € (2‘%00, i—g); hence, the
discontinuity in the magnetization can be at most Am|qx = i’—g. When rg < 0, m = 0 becomes

SoE/ 85 —4rouy

a maximum, and there will be minima to either side at m = g
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If we expand about the MF, S = m + ¢, we may write the homogenous part of the Hamilto-

nian as
1 1
BH = BHyr + /d3? {5 (ro +2gom+ 3u0m2) ¢2 ~3 (go — 3u0m) ¢3 + %(])4] . (6.28)

In the following section, we derive an expression analogous to the one above beginning with
a microscopic model for a quantum Ising system. Unlike equation (6.28), the resulting theory
fully incorporates the spatial dependence and time dependence of the interactions between the

fluctuations.

Quantum Ising Systems

Consider a quantum spin system of the form H = Hy + H ', where Hy is the MF Hamiltonian,
and may include any number of single ion terms such as a transverse field, single ion anisotropy,
or hyperfine interactions. For example Hy could be the MF Hamiltonian of LiHoF4, Hy =
Y, H},p, with

Hyp = —ES?C —Vo(S$)0S; +An - I + A ST} (6.29)

FALSTL AT ST AL ST AT ST
We take H' to be a longitudinal coupling between spin fluctuations,

p 1 o
H =—3 Y ViSiSs, (6.30)
i#]

where §¢ = §% — (S%)0. The subscript 0 indicates the average is to be taken with respect to the
MF Hamiltonian, and (S%)¢ is determined self consistently. In Fourier space, the interaction
becomes

!

e, s I pos
H = E;vksisz_k = —E;Vk S38°,, (6.31)

where, in the final expression, we note that in, for example, an exchange coupled crystal that
lacks inversion symmetry, V;, = VkR + in] may have an imaginary component; however, since
Vi = V*, the imaginary component vanishes upon summation. In what follows, we simply
write Vj and it is to be understood we are talking about the real component. We assume the
interaction is ferromagnetic.

In this section, we apply the Hubbard-Stratonovich transformation to H' in order to derive
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an effective field theory for a quantum Ising system. We then proceed to use the field theory to
develop a diagrammatic perturbation theory for systematically including the effects of fluctua-
tions in quantum Ising systems. We show that the diagrammatic form of the theory is equivalent
to that of Brout [60], which was introduced in 1959, and applied to the spin half transverse field
Ising model in a series of 1973 papers by Stinchcombe [26, 62, 63]. The field theoretic for-
malism presented here generalizes Stinchcombe’s results to systems having an arbitrary single
ion Hamiltonian, as well as offering a great deal of simplicity and clarity when compared to
previous work. Furthermore, the effective field theory is suitable for a renormalization group

treatment of a system’s critical behaviour.

Partition Function

Statistical mechanics requires knowledge of the partition function,

Z:ZO<TTexp[— %/Oﬁ dtﬂH'(r)] >O. (6.32)

We now apply the Hubbard-Stratonovich (HS) transformation,

2 * dy —ﬁix
e = ——e 2 y7 633
/oo V2T ( )

to the exponential, following the procedure in [58, 95]. Here we generalize Young’s work [58]
to systems with more than two degrees of freedom, and we carefully work out coefficients of the
resultant field theory to all orders. Note that there is a sign ambiguity in the HS transformation.
As discussed in Section 6.2, the choice of sign may determine in what direction the field will
order in the resulting theory. In what follows, we choose the minus sign. We let x; = (BJ); =

Y.+ BijS5 be components of a vector, and note that %562 = %Zi#BViijSj, with (B%);; = BVij.
We apply the HS transform to each component of the vector X, at each imaginary time step 7.

The partition function is then

Z:ZO/%exp(—%/fdtile%(r))><<T7exp(—é/()ﬁd”c;jQi(’c)Bijgi-) >O.
(6.34)

What we have done here is replace the interactions between spins with interactions of a

single spin with a site dependent Gaussian random field. This is an analytic procedure for
obtaining a functional integral representation of the theory. We will now proceed to integrate
out the microscopic degrees of freedom from our Hamiltonian by completing the trace over the

single ion Hamiltonian, thus obtaining an effective field theory from our microscopic quantum
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model. Keep in mind that the single ion Hamiltonian may contain the hyperfine interaction. By
performing this trace, the nuclear degrees of freedom are incorporated into the coefficients of
the resulting field theory. We have arranged the factors of  to make our field dimensionless.

The spatial Fourier transforms of the exchange interaction and the fields are given by

1 . 1 o o
Bij _ N k Be ik(ri—rj) By = ]T/ 2 : Bijelk( =) — § Bijelk( i—7j) (6.35)
1y J
1 —ikr; 1 ikr;
 —_— 2 e i _ e

After Fourier transforming, we find the partition function to be

Z_ /%exp(— %/f erkL\Qk<r>\2> x<TTexp(— é/oﬁdr%)) >O, (6.36)
where

V(t) =Y 0 (1)BSi (1), (6.37)

k

where we integrate over the real and imaginary parts of the HS field separately. However,
noting Oy = Q* ,, we see that this double counts each degree of freedom. This may be dealt
with by restricting momentum space summations to half the Brillouin zone, or introducing
factors of one half.

It is advantageous at this point to establish a relationship between the HS field, and the
imaginary time connected longitudinal correlation function, Gx(t —17’) = —<TT§2(T)§Z_ LT
as was done for the Hubbard model in [113]. We add a fictitious site and time dependent

magnetic field, H' =Y, h,(r)gf to our Hamiltonian so that our interaction becomes

V() = £ [h-e(s) + 0-u(7)B55(0) ©39)

k
A factor of B has been absorbed into the applied field in order to make it dimensionless. Now,
by shifting the field, Q_x(7) = Qlk(r) - h‘g—if), we may transfer all the dependence of the
partition function on the applied field to the Gaussian prefactor,

Z_[22 o L[ (o) 2)
75 mexp( 5 Odfczk: Qi (1) B, (6.39)

X <Tf exp < - /01 dr;Q_k(r)Bk§;(r)>o,

where we take T — % in order to make the integrals dimensionless. The correlation function is
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then given by

6InZ
Gi(t—1)=— . 6.40
(=) = = S Do () o (6.40)
By performing the derivatives we find
1
Gi(t—1)=——— [<Qk(r)Q_k(r’)> — 1} : (6.41)
BVk 0

where the subscript Q on the average is a reminder the average is now being taken using the

partition function of the HS field given in equation (6.36). In Fourier space, this becomes

Gi(iwn) = B /01 dte' " Gy (t) = _Vik [<|Qk(iwn)|2>Q - 1} : (6.42)

This establishes a general result between the spin correlation function and the field. Typically,
the HS field is governed by a much simpler equation of motion than the original spins, so

working with the field is advantageous. Also, note that

= 1
S:(7)) = (Si(7)) — (Si(T 0:—<Q r>, (6.43)
(Sk(1)) = (Si (1)) = (Sk (7)) NG k()Q
where, as before we take T — % so that our dimensionless 7 € [0, 1].
We now return to the partition function given in equation (6.36), and perform a cumulant

expansion leading to,

7| en( 55 [ L) (644
T, [exp( ; (,;;13?; [:11 i P anim, <v<1>)>0)] |

where M, is the n’ cumulant of the interaction.

Consider the second order cumulant

(M (V(7)))o =Ty {ZZQk(Tl)Qk/(rz)BkBk/ <M2(§;(m§;/(h))>o} : (6.45)

k Kk
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Now,
1 ; i = .
_ TT]T/ Ze—zkrie—zk rj <M2(S§(11)S§:(1'2))> (6.46)
0 ij 0

=Tz <M2(SZ(TI)SZ(’L'2))> 6k,—k’-

0

REAGIEICIEIY

The average in the second expression is with respect to a single site Hamiltonian; hence, all the
terms in the sum vanish except those with i = j. We are left with the expression on the right,

in which the site index has been dropped as we are always dealing with averages of spins at a

single site. Note that we have used the fact that <M2 (§%(7y )§Z(Tz))> :<M2(SZ(‘L'1)SZ(T2))>
0

0
At third order a quick calculation shows that
= = = 1
T (M55, (), (205, (2))) = Te e (M(S(0)S (SR ) Brnnsinar (647
0 0
We wish to establish the general result
= -~ ~ 1
T: <M,1(Si1 (71)8;, (%) . .Sin(fn))> = TTNE <Mn(SZ(r1)SZ(12) . .SZ(Tn))> Oyn ki0-
0 2 0
(6.48)
We begin by writing the cumulant as
~ ~ ~ T. i ~ ~ ~
TT<M,,(S21(11)S§2(T2) . .Sin(rn))> = N_T% {Hze ik m} <Mn(S§l (71)S5,(m2) - an(fn))>
0 no i, 0
(6.49)

_ TTN}ZZ <Mn(§z(rl)§z(12) y .§Z(Tn))>052?lki7o.

The final line follows from the fact that spins belonging to different lattice sites are independent
because the average is taken with respect to the single ion (MF) Hamiltonian; hence, cumulants
of spins belonging to different lattice sites are equal to zero, as discussed in Section C.1 of
Appendix C.

We are left with the task of establishing M, ([T, S3(T7)) = My( " 1 8%(7;)). This follows

almost directly from the definition of the cumulants; here we give a brief proof by induction.
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We assume the result is true for M,,, and then consider

n+l _ n+l _
Mn+1(HSf> :<HS§> - Y M. My, (6.50)
i=1 i=1 0

ny o tnp=ntl
ni1

where the lower order cumulants all satisify our desired result by the induction hypothesis, and
we exclude any terms containing M (§Z ) as this term equals zero. The first term on the right
hand side of the equation is the (n+ 1)st central moment of the spins, which may be expressed
as the (n+ 1)st cumulant plus terms that cancel with the lower order cumulants on the far right
hand side of the equation. This proves our result. The 7 ordered averages of the spin cumulants
are dealt with in Appendix E.

In frequency space we have

L B o ; ] :L L ol T
wnion)) =1 [ dneo|oniian) nttan = g LT[t
(6.51)
ot = [ 0l 0(F) = Le " Qlia),

which gives

[T/ asonv @)= ¥ X100 8o [p(-i0 )8 o0 65
i=1 {ki} {ri} i=1

We may now write the partition function as

zZ 9

Z _ [Z2Q no (6.53)
2y 21

where the Hamiltonian is understood to be dimensionless. The integration is over all complex
fields Oy (iw,); however, Qi (iw,,) = O_(—iw,,)*. Recall, this double counts all the degrees of
freedom, and we must restrict our k summation, or introduce factors of one half. The Hamilto-

nian is given by

2 {Z}{kz}” (ki) _{lwr’})I_Ile,(iwri) : (6.54)
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with
u 1 1 1 . .
E - E 61'(0,1,71'60,2 - E(Vklvk2)2M2<_lwr1 ) _lwr2> 6k1,7k27 (655)

where we have used B, = /B V. Note that M», and the higher order spin cumulants, contain
additional zero frequency contributions that vanish in the zero temperature limit, and in the

paramagnetic phase of the system. The higher order coefficients are given by

-1 n+1 n 1] 1 )
= S | TT6V-0} | ot o (656

Gaussian Approximation

We now analyze our quantum Ising system in the Gaussian approximation. We begin by per-

forming a momentum and frequency summation on u;, given in equation (6.55), to get

Y wr = [1+Vig(io,)], (6.57)
r2,ky
where we have used
Y My(—iw,,—iw,) = —Bglioy,), (6.58)
and the MF Green'’s function,
2Eum 2
glioy) = n;ﬂ cmannW <Zcmm {;cmmDm} ) 5w,.1 0 (6.59)

is derived in Appendix E. The MF Green’s function contains poles at the differences between
each of the systems MF eigenstates, E,,, = E, — E,;;, as well as an additional zero frequency
contribution that vanishes in the paramagnetic phase, and in the limit 7 — 0. The ¢, are the
MF matrix elements of the S° operator, and the population factors are D,,, = D,, — D,,, where
D,y = Zy e PEn,

The partition function in the Gaussian approximation is given by

z 29 ! . 2) 1
z= mexp( 22{1+ng(zwr)} Ok (i) ) —g—l V(o) (6.60)

rk

and the corresponding (Gibb’s) free energy, F =U —TS—HM,dF = —SdT —MdH, where H
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is the externally applied field, is
l w1 )
F:F0+l—32§1n[1+ng(za),)]. (6.61)
rk

The path integral double counts all the degrees of freedom, hence, there is an additional factor
of % in the summations. The momentum space summations are over the entire Brillouin zone.

Differentiating the free energy with respect to Vj, we obtain

oF glioy)

v —(TT_g) BZ—Hng o) (6.62)

We identify the term after the summation with the imaginary time connected Green’s function
in the Gaussian approximation. Alternatively, taking the derivative before performing the path

integral yields

-~ 1 . .
—(TT k) = Ezg(’wr)<|Qk(’w’)|2> , (6.63)
r 0
where the average is now taken with respect to the partition function
(s )
70 = ex 2, (io, io)|? |, 6.64
0 ——exp Z )| Qx(ieor)] (6.64)

and the free field propagator is defined to be

1

0 = )

(6.65)
We find that

[ 710]exp (— Yrin0 7, (ia»)\Qk(iwr)F) 0uioo,)
<|Qk(i60r)\2> = = (o),
0 [ 7|0lexp (— Tin0 7" (iwr>|Qk<iwr)|2) 0k(i@)|

(6.66)

where the integral has been performed in polar coordinates, and the momentum summations
have been restricted to k > 0 to avoid factors of two. From this, we can relate the imaginary

time connected two point correlation function to the auxiliary field Q; we find, at the Gaussian
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level,

Gelia) = g(iwr><|Qk<iwr>|2>Q _ % 6.67)

This result can also be derived directly from equation (6.42).

Higher order correlations between the HS fields may be generated from

20
Zg = \/2_exp ( Z.@ (iw,)| Ok (iw,)|* + = Z lhk i) O (i) —l—hk(la)r)Qk(l(Dr):|>
rk
(6.68)
Integrating, we find Zh dew( ), where
W (h th i) Dy (i) i (o). (6.69)
k r
The connected field correlation functions are then given by
. 0
[T (i) )= = 5 —W(h)| . (6.70)
i h=0

In the low temperature limit, the additional zero frequency contribution to g(i®,) vanishes,

and we find

. . Hn>1[E21 - (iwr)z]
2 r =D r) = ] . .
o) = D) = e G0 o] Ve Lo [t P2Em Ty [EL — (i)
(6.71)

_ s [E — (i)’
[,[(Ef)? — (ie)?]

where, in the final expression, we have factored the numerator into the RPA modes of the

system. The spectral weight of each RPA mode follows from

1
Ak(a)):—%Im[Dk(ia)r%wﬁ—iO* ZA” (@—El)—8(0+E])|, (6.72)
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where

Hn>1 [( ) E2 :|
A,’g = . (6.73)
2E]f Hs;ép {(E]f)z - (E]i)z}
The free energy is given by
lim F = Fy— —ZZ {m — (ioy)*] —In[(E})? (ico,)z]}. (6.74)
rk p

Terms not included in the expression above decay exponentially with temperature. We may

perform the frequency summation by making use of the following trick

-14

5 aaZln a* —72) —_ﬁlZ[

where np is the Bose-Einstein distribution function. Integrating the result with respect to a

1 1
Zrt+a zyp—a

} — np(—a) — np(a) = — coth (’32 ) (6.75)

yields

_Fl;m (@ —2)= —%m {sinh <%)} +C. (6.76)

Subsequent analysis will show that the integration constant is zero. Applying this to the free

energy we find
1 E? E
}ing =F+ 3;; {m {sinh (ﬁTkﬂ —1In {sinh <B 2‘”)” . (6.77)

Note that in the limit V;, — 0 we have F — Fj and E,f — E)1. All the terms under the summation

in the above equation vanish, giving the correct free energy. This justifies setting the integration
constant discussed above to zero.

The thermodynamics of the transverse field Ising model has been dealt with in some detail
by Stinchcombe in [63]. Here we review some of the basics using the field theoretic formalism.
The energy levels of the transverse field Ising model in the MF approximation are given by
E*=4E = :I:% A2+ H?, where A is the applied transverse field, and the longitudinal field
H = h+Vy(S%)¢ includes an applied component 4, and a contribution from the MF of the rest
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of the crystal. The MF magnetization is defined implicity by

H
§%)o =tanh(BE) ———— (6.78)
(550 (BE)S 7 —7
The lowest order term in the free energy per spin is then
K 1
fo= NO ~E;— gl [2cosh (BE)], (6.79)
where the ground state energy per spin is £, = % (SZ>(2). From this we find the MF magnetiza-
tions to be
d fo a /o A
A Y < ——=—= = {(§%0 = = (5. 6.80
5 = 8o 55 = (80 = 5 (S0 (6.80)

In the paramagnetic phase of the system, the entropy in a fixed transverse field is given by

S0 = —% =1In[2cosh(BE)] — BEtanh (BE). (6.81)

For the transverse field Ising model we have E,; = 2E, and the RPA spectrum is given by

2 o 2%A?
E; =E5 —

B - 1N the zero temperature limit we find

1
Fil,_y= EZ[Ek — En]. (6.82)
k
This term yields corrections due to quantum fluctuations around the MF ground state.

The Interacting Field Theory

We now systematically include corrections to the Gaussian results for a quantum Ising system
due to the interactions between the fluctuating fields. We begin with a brief look at the cubic
term in the theory in Section 6.3.3. We find that this cubic term may be non-zero in the para-
magnetic phase of a quantum Ising system with more than two degrees of freedom. If such is
the case, the system will undergo a first order phase transition. Unfortunately, in all systems
studied by the author to date, the cubic term vanishes. After our look at the cubic term, we
outline how to derive corrections to thermodynamic qua due to all powers of the HS field, and

calculate the leading order corrections to the Green’s function in Section 6.3.3.
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Cubic Term
At third order in our Hubbard-Stratonovich field we find the coefficient to be
1 1

r s 1 1 1 ]
ul) = ﬁﬁzvfklvszvfh FM3({wri}>6kl+k2+k370' (6.83)

We restrict our attention to the low temperature limit of a system in its paramagnetic phase

(above some quantum critical point), in which case

}iLI})M3({wri}) = ZB Z Re[clncnpcpl] Z EplEnl _ <iwr1)<iwrz>

. . 5a)r +(Dr +wr ,0'
p>ntl P{o,} (Elzn_(’wm)z)(E;%l_(lwrz)z) b

(6.84)

In a two level system, no such term exists because it involves matrix elements c;; between
at least three MF energy levels. The leading order correction to the Gaussian results will be
quartic in the Hubbard-Stratonovich field. With three or more levels, the cubic term may be
non-zero in the paramagnetic phase of the system. This indicates the phase transition will be
first order. This is a surprising result - additional degrees of freedom, beyond spin one half,
may lead to a first order phase transition in a quantum Ising system. This leads to the question:
In what systems, if any, will this term be significant?

First of all, we note that if the single ion Hamiltonian is diagonal in the S¢ basis, there will
be no off-diagonal terms in the matrix elements of the $* operator because c;; = 0. So, for
example, in a spin one Ising system with longitudinal single ion anisotropy (an (Sf)2 term)
we don’t expect the physics discovered here to be relevant. Secondly, if the §¢ operator only
causes transitions between neighbouring single ion eigenstates, for example, a large spin in an
applied transverse magnetic field, the phase transition will not be first order. The cubic term of
the effective field theory will be non-zero in the paramagnetic phase of the system when there
are non-zero matrix elements, c;;, such that cy,c,pcp1 is non-zero. It would be of interest to

determine if any such systems exist, or if they are forbidden by a general principle.

130



Systematic Corrections to the Gaussian Results

The calculation of spin correlation functions has been reduced to the calculation of correlation

functions of an interacting field with generating functional

Zh= fzgexp( Z@ (i) | Qx (i) (6.85)
+Eg[hzﬁwagk(iwr)+hk<iwr>Q;z<iwr>}—v<Q>),
where,
V(Q) = %i [{%%Zi}u(")({ki}, {iwr,-})iliQk,-@er} , (6.86)

contains all the higher interactions between the fields. In what follows, we will consider the
third and fourth order terms dropping all higher order interactions. For notational convenience,
we define ¢ = u® ({k;},{i®,}) and u = u® ({k;},{i®,}), suppressing all momentum and
frequency dependence. Note that these functions are symmetric under permutations of the

frequencies and momenta. Our partition functional is then

20
ZQ:/\/z_exp<——;;@ (io,)| Ok (iw,)| (6.87)
4
3| L Y o[ o )| 5 {z oo ).
{ri} {ki} =1 {ri}{ki} =1

We begin by calculating the leading order correction to the magnetization
(Si(7)) = (Si(1)o+ 7 Z mios 1 <Qk(ia)r)>, (6.88)
B vV BVk
with

(6.89)

0
<Qk(iwr)> = 5}1;; lnzg

We treat the interaction perturbatively. The leading order correction involves one power of g,

h=0
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and is given by

(Sk(7)

Z e Z Zg ({riH{ki })<Qk(lwr)Qk1(lwrl)ka(lmrz)ng(lwr3)> -
r {rz}{k} 0
(6.90)

\/ﬁ_vkﬁ

Note that because g is symmetric in the momenta and frequencies, the coefficient for the various
Wick contractions of the field will be the same. Recall that the path integral double counts each
degree of freedom; therefore, we must restrict the momentum summations to half the Brillouin
zone, or introduce a factor of one half. In the following, we introduce an additional factor
of one half and leave the momentum space summations unrestricted. As we are considering
unrestricted momentum summations, we must consider, for example, contractions of ky = —k3
and k3 = —k; separately. Hence, all combinatoric factors cancel. Contracting the fields, we
find

1 . 1
(S:(1))1 = ———= e““”@k(iw ) Ty (iwy) s M3(i0y, iy, —io,), (6.91)
k 2\/N ; r r%/ T ﬁ3 r T r
where we define the renormalized interaction, or T matrix, to be

Vi
Ti(io) =Vig(io) = ——————. 6.92
k(io,) = ViZ(iay) T (o) (6.92)
The role of the HS field is to renormalize the bare interaction between spins. Integrating over
the imaginary time we find
B 7:(0) 1
Se :/ dt{S: (1)) = ———== Ty (ioy)—=M3(0,im., —i@,). 6.93
(5= [ eSO === T BTilion) g e (699)
This is the leading order correction to the magnetization of the system.
We now turn to (|Qy (i@, )|?), and calculate the leading order corrections to the spin correla-
tion function. Expanding the interaction, the leading order corrections will come from a single

power of u, and from two powers of g. We write

(|Qk(ion)[*) = (| Qklion)[*)o + (| Qklion)[*)u + (| Ok (iar)[*) g + - (6.94)

Wick contracting the auxiliary fields, we find the leading order correction due to the quartic
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coupling to be

(1Ok(iey)*)u = BVk% io) Y, BTy (iwy)

[34M4(la)” [, i®, —i0y), (6.95)
kl r/

where, as with the magnetization calculation, all combinatoric factors cancel. We have in-
troduced an additional factor of one half to compensate for double counting the degrees of

freedom in the path integral. Equation (6.95) is conveniently written as

. 2 guli®y) Vi
, =— 6.96
(|Qk(iwy)]*)u [1+ go(iw, ) V]2 ( )
with
gu(i(l)r) = B Z BTk/(lCO /) M4(l(1)r —iWy, i@y, —I0 /). (697)
2N £ r/ ﬁ4 9 ) () r
We find the field correlation function to approximately be given by
1 % 1
. ) . 2 8uVk
i + io = 1— ~ 6.98
Qi) P)o+ Qulier) P 1+80Vk[ 1+g0VJ 1+ (go +&u) Vi (0.98)

We now consider the contribution from two powers of g. There are two different diagrams
corresponding to this contribution, {|Qy(i®,)|? )g2 = = (|Qk(i®,)|*) 1 + (|Ok(i®)|?) 5, which we
consider separately. The first, (|Qy(i®,)|?)z, comes from a loop diagram where the external
fields are each coupled to a separate vertex. The second, {|Qy (i@, )|?) g, comes from a “balloon”
diagram where the external fields are coupled to the same vertex. As before, all combinatoric

factors cancel. The loop diagram is given by

gL(k,i(D,)Vk

. 2 _
(|0k(iy)|") L = T+ golion)Vi2 (6.99)
with
gr(k,iw,) = ——Z Y BTy, (iwy,) Ty, (ie2,) (6.100)
k1 r,r

B6M3(Z(L)r,l60rl,l(l)r2)M3( 0, — iy, —i, ).

In the low temperature limit, where we need only consider overall momentum conservation,
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5iwr+iwr1 +ie,, 05 equation (6.100) reduces to

gr(k,iw,) = ZBZTk/ i) Ty (—io, — i) (6.101)

2N

ﬁ6M3 (ioy, i@y, —i®, — (0 )M3(—i®,, —i0y,iO, + i0y).

As with g,, we have introduced an additional factor of one half to compensate for double
counting the degrees of freedom in the path integral.

The balloon diagram is given by

. gB(iwr)Vk
Oclio,)|? — : , (6.102)
(00N )p =~ % e
where
gslio,) = Z Y B*To(ior, Tk/(za),z)ﬁ6M3(zw,, (0,10, M3 (i@, , i@y, —i®;,).
k’ 1,12

(6.103)

In the low temperature limit, where we need only consider overall momentum conservation,

we have
gs(io,) = BV, ﬁ3M3(za)r, —iw,,0)(S%)1, (6.104)
where
. | Ry 1
(81 = ﬁ(sk:())l = —5x X BTy >ﬁ M;5(0,i0y, —iwy), (6.105)
rl7k/

and Ry = Dy(0) is the ratio of MF to RPA energy levels at zero wavevector as discussed in
Appendix D.
Combining these corrections, we find

1
Oclio)]?) ~ , (6.106)
Qi) 1+ (g0+8u+28L+88)Vi
which, using equation (6.42), leads to
. go+8gut+8rL+8n
Gilio,) ~ . (6.107)
(i) 1+ (g0+8u+8L+8B)Vi
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The diagrams corresponding to the corrections g,, g1, and gp are given in Figure 6.1.
Expressing the correlation function in the form given in equation (6.107) allows for easy com-
parison to the work of Stinchcombe [26, 62, 63]. We find the function & ~ g+ g, + g1 + g8
to be equivalent to equation (2.7) of [62]. The approach presented here is simpler than Stinch-
combe’s approach, and it clearly illustrates how the fluctuations screen the bare interaction
between spins. We have also generalized Stinchcombe’s work to systems with an arbitrary

single ion Hamiltonian.

Figure 6.1: The figure above shows the one loop diagrams that contribute to the leading
order correction (order %, z being the coordination number) to the connected two
point longitudinal correlation function of a quantum Ising system given in equation
(6.107). The left most diagram is the balloon contribution gp, the center diagram is
the loop contribution gz, and the rightmost diagram corresponds to g,,.

We close this section with a statement of the momentum space Feynman rules for calculat-

ing corrections to the Gaussian results for the Hubbard Stratonovich field to all orders.

1. We associate an external leg of our diagram with momentum k and frequency i@, with

each of the Hubbard-Stratonovich fields in our correlation function. Each external leg

carries a factor of \/BVi Zk(iw;).

2. We consider vertices of all orders. A vertex of order n has a factor of order I%M” associ-
ated with it. We join the vertices to each other, and to all the external legs, in all possible
ways that leave the diagram connected. The order of each diagram is determined by the

number of free momentum summations it contains as discussed in Appendix C.

3. Each internal line has a momentum k and frequency i@, associated with it and con-
tributes a factor of BV, Z;(i®w,). Energy and momentum conservation at each vertex is

determined by the associated spin cumulant.

4. Sum over each internal frequency, and for each internal momenta, add a summation Il\, Y-
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The Renormalized Interaction

As noted following equation (6.92), the role of the Hubbard-Stratonovich field is to renormalize

the bare interaction between spins. As the renormalized interaction (The 7" matrix),

Vi

Ti(io) = ViZ(ioy) = T+ glio Vi

(6.108)
plays a central role in calculating corrections to the RPA results, we present it here in some
detail. A similar analysis is carried out by Stinchcombe in [62] for the case of a spin half
system. The expressions below generalize Stinchcombe’s result to systems with an arbitrary
single ion Hamiltonian.

We begin by writing the renormalized interaction as
Ti(i0,) = ViDi (i) + T Sio, 0- (6.109)

In terms of the MF energy levels of our system, and MF matrix elements of the longitudinal
spin operator, we find

2 (; 2
Dk(iCOr) . Hn>m(Enm (l(l)r) ) (6.110)

B Hn>m(EI%m - (lwr)z) - Vk Zp>q cczlquszqu n>m (E,%m — (l(Dr)2>

n,m#p,q
~ Tlem(Ep, — (ia)?)

I ((E)? = (iwr)?)

and
Vk - Vk Hn>mEr%m _

6.111)
LetE” —BVk{Z ComD _(Z Cmnl) )2] et
Hn>mEnm m = mme =i

2
ﬁvkz |:Zm C;%1mDm - ( Zm CmmDm) :| Hn>m E;‘zrm

2
Hp (EII:)Z [Hp(Elf)z - ﬁvk [Zm Crzanm_ <Zm CmmDm) } Hn>m El%m}

where in the final expression for Dy (i®,) we have written the denominator in terms of the RPA
modes E,f . Note that TkO vanishes in the limit 7 — 0 and in the paramagnetic phase of the
system.

We see that Dy (i@, ) has zeros at the MF energy levels of our system. This fact proves useful
when performing frequency summations in the fluctuation analysis because when Dy (i®;) is

multiplied by a function with poles at the MF energy levels, we may ignore those poles.
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Summary

We introduced this chapter with a general discussion of the problem of including the effects of
fluctuations in quantum Ising systems, and have emphasized the simplicity and utility of the
field theoretic approach developed here. After the general discussion, in Section 6.1, we intro-
duced a classical heuristic model of an anisotropic Heisenberg spin system. We showed that a
field transverse to the easy axis in this model leads to a reduction in the critical temperature of
the system, and derived expressions showing how the energy cost of fluctuations is affected by
anisotropy. Finally, we showed that the effect of anisotropy is to give mass to what were the
Goldstone modes. In Section 6.2, we briefly discussed how a cubic term in an effective free
energy function for a system leads to a first order phase transition. This may be relevant to
quantum Ising systems with more than a spin half degree of freedom.

In Section 6.3, we developed a field theoretic formalism for treating quantum Ising systems
with an arbitrary single ion Hamiltonian. We then proceeded to analyze the resulting theory
in the Gaussian approximation in Section 6.3.2. In section 6.3.3, we discussed systematic
corrections to the Gaussian result, beginning with a look at the cubic term. We found that, in
principle, the cubic term may be present in the paramagnetic phase of a system with more than
a spin half degree of freedom at each site. If such a term exists, this would lead to a first order
phase transition. We proceeded to use the field theoretic formalism to calculate the leading
order corrections to the magnetization, and the longitudinal Green’s function, then we stated

the Feynman rules for systematically obtaining higher order corrections.
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Chapter 7
Corrections to Mean Field Magnetization

In this chapter, we calculate the leading order correction to the mean field (MF) magnetization
of quantum Ising systems. Recall, the magnetization is given by (S%) ~ (§%)g + (S%)|, where

(8%)¢ is the MF magnetization, and the leading order correction is given by equation (6.105)

1
(Sh1=—2y %ﬁTk(iwr)ﬁM3 (0, iy, —i;). (7.1)

This result is the % term, z being the coordination number, in the high density approximation
developed in Chapter 6. The diagram corresponding to equation (7.1) is shown in Figure 7.1.
We may compare this result to equation (2.10) of Stinchcombe [62]. The result of Stinchcombe
is missing the prefactor Ry because Stinchcombe does not screen the interaction corresponding
to the zero momentum and frequency line in Fig. 1d of his paper (the vertical line in Figure 7.1
of this thesis). In Section 7.2, we will deal explicitly with the spin half transverse field Ising
model, and demonstrate the prefactor is necessary in order to obtain the correct leading order
correction to the magnetization.

We restrict our attention to the zero temperature limit, in which case the renormalized

interaction (the T matrix) is given by

_v L1 (E7y — (i0,)?)

Tk(iwr) o - knp((E]f)z — (iwr)z)v

(7.2)

and the prefactor Ry is the zero wave vector and zero frequency component of the free field

propagator Z(im,) given by

1

_ o Hn>1 E;%l
1+g(0)Vio

RO - 9
r—o  TIp(Eo)

(7.3)

138



Figure 7.1: The diagram above corresponds to the leading order correction to the magne-
tization of a quantum Ising system in the high density approximation (an expansion
in the inverse coordination number).

The third order spin cumulant, derived in Appendix E, is given by

M5(0,i0,,—io,)| =Y (c11—cm)lc1a*AY(0, iw, —ie,)+ (7.4)
T=0 n>1

+ Y Re[cincnpep]AN0, ioy, —io),

n>1
p>n

where

3E31 — (iwr)2
[Ex — (i)
Eny n Ep
Epl (E,%l - (iwr)z) Enl(Egl - (iwr)z)
e E,71En1 + (ia)r)Z. .
(Eqy — (’wr)2)<E§1 — (iay)?)

A0, iw,, —io,) = -2 (7.5)

A0, iw,, —iw,) = 4B

Note that A(l) and Ag are functions of the summation indices, n and p, as well. We suppress these

indices for the sake of compactness. Combining terms, we may write the zero temperature
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correction to the magnetization as

ka|:z C11—C,m)|cln|2Ag+ Z RC[ClnCanpl]AZp , (76)
n>1 p>n#l

n_ 2 Z 3E2 (icy)? Hm#ml(Er%zl — (io)?)

3‘_3 <iwr)2 M1, (E])? — (i0,)?) 77
i En 2 i 2 E£ 2 i 2
= 5L L 1,5 G0+ 2 T (6~ 0

- EpEn +(0)2) T (E2—(i0)?)].

m#n,p,1

We see that all the poles at the MF energy levels vanish from AZP due to the zeros of the
screened interaction; however, we still must deal with MF poles in A5. Furthermore, we must
treat points at which the MF energy levels and the RPA energy levels are degenerate carefully
because the order of the associated poles in A% and AZP will change. There is also the possibility
that a pair of the RPA modes are degenerate. In such cases, we simply shift one of the RPA
modes by a small amount to avoid the degeneracy.

Our next task is to perform the frequency summations. We do so in the usual way, viz., we

write
1
Aj= —EZ z2=1iw,) ernB Zp) (7.8)

where 1, is the residue of f; at the ' pole Zp, and np(z,) is the Bose-Einstein distribution

function

1

ng(z) =

Note that f;(z) = fj(—z); hence, Res[f;(z0)] = —Res[fj(—zo)]. This simplifies our task some-
what because it means we only need to consider positive poles. The Azp function has simple

poles at each of the RPA energy levels. Making use of the fact ng(z) —np(—z) = coth(%), and
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using Res|f(z);c] = lim,—,.(z — ¢) f(z) to find the residue of f at ¢, we find that

2 E, Ep
Ay = —_ (Epi — (Ep)H) + 2 (Eni — (ER)?)  (7.10)
! ;E,in#z(EZ)z—(E,i)z Epi mlyé—[n,l " ¢ En mg,l " ¢
BE;

+(EptEn — (E)?) [T By — (D)) coth ().

m#n,p,1

In the zero temperature limit, coth(ﬁ =% ) is simply equal to one. Analysis of the A% function
requires more care than analysis of the AZP function because we must consider the possibility
that the RPA modes and the MF energy levels are degenerate. If there are no degeneracies,
there are simple poles at each RPA mode and the n'" MF energy level, and the result of the

frequency summation is

Hm#nl(Ezl _Ezl) ﬁEnl
A5 =-2|E oml_nl coth 7.11
3|E,,7éE,f nl Hp((E,f)z _E31) ( 3 ) ( )
y 3E2 — (EP)?  Tlwsni B2y — (ED)? coth(BE’f)
p Er%l - (Elf)z 2E]€ Hq#p(E]?)z - (E]f)z 2

In order to deal with the case where the n/” MF energy level is degenerate with one of the RPA

modes, E,; = E]!, we begin by rewriting A% as

Z Eq_lwzr;é(g)_ o (7.12)
where
P(z) =2[3(E{)* - Z’] g[l[E,i]—zz] (7.13)
0z) = [E{ +2)° H[(Ef)é —2).
P#q

We now have a second order pole at the E, and simple poles at all the other RPA modes. The
residue at the second order pole is given by
d P(z) _ P(E{)Q(E{)— P(E{)Q'(E{)

Res|,¢ = lim — ,
5y = —EIdz0(z) O(E})?

(7.14)
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where

PES) = —4E) [ B2 - (EI-8(E® Y [1 EA-(E  (1s)
m#n,1 m#n,1 r£mn,1
=4E TTIED? = (ED-8ED’ Y. TT [(ED?>—(E)?).
p#q PF#qr#p.q

This gives the following result for the frequency summation

/(4 qy a1 q

a0 = P (Ek)Q(EkQ)(EZJZ’z(Ek)Q E o (B§k> (7.16)
o 3ED (D T (B —(EDY)  BE[
,§q > & PP E g (E? — (B "2

To summarize, we have found the leading order correction to the magnetization at zero

temperature to be

ZVk Z (c11 — Cun)|C1n|*A% + Z Re[cincnpepi]A" |, (7.17)
n>1 p>n#l

with A% given by equation (7.11) if there are no degeneracies between the RPA modes of the
system and the MF eigenstates, and A% given by equation (7.16) if such degeneracies do exist.
In the paramagnetic phase of the system, the contribution from A% vanishes, and we are left
with only the contribution from Azp , given in equation (7.10). In the event that two of the RPA
modes of the system are degenerate, we simply shift one of the modes by a small amount,

rather than deal with a higher order pole in the associated frequency summation.

Landau Theory

Recall from Section 6.3.3 that the partition function governing the Hubbard-Stratonovich field

corresponding to fluctuations in a quantum Ising system is given by (to fourth order in the field)

exp(— =Y 7. (i) | Ok (io0y)|? (7.18)

rk

g
[z Y ¢[00, } - [z Y u[ oo, D

{rit{ki} =1 {rit{ki} =1
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where, in the low temperature limit,

. . . . Hn>1 [Er% — (iwr)z]
Dilio,) - Dilio,) = I Eg)é )

(7.19)
and the higher order coefficients are functions of the fluctuating Matsubara frequencies and

momenta, g = g({k;},{iow,}) and u = u({k;},{i®,}). In a renormalization group treatment

of the system, the frequency and momentum dependence of g and u is irrelevant, and we may

_ BVoN —BVoNL[Q]
Zp= / {\/ o @Q}e , (7.20)

with the Landau energy function being

simply write

ZD (iw,)| Ok (iwy,)]? (7.21)

1

~ 4
~S[L EHouion] + [ £ X TTowon].

{ri} {kiyi=1

The fields have been rescaled (Q — \/W Q). This eliminates any explicit dependence on
B or N from the resulting Landau energy function, although, the function still has implicit
temperature dependence because the prefactors are functions of the temperature dependent
spin cumulants. The prefactors in the Landau theory, gy and ug, are obtained by setting the

frequency and momentum dependence of g and u to zero, and rescaling them as follows

o g({ki =0}, {iw, = 0})
2+/BVoN
= M({ki = 0}7 {iwri - 0})
0= 6BVoN '

(7.22)

In Landau MF theory, we assume the system is uniformly magnetized, and ignore the frequency

and momentum dependence of the quadratic term, taking

Hp(E]f:O)z )

D iw) - ro=R,' =
k r 0
Hn>1Er%1

(7.23)
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Using the results of E we find, in the low temperature limit,

~ 1 1
20 — 3V02 [ Z (c11— c,m)|cln| —5 Z Re| 2C1ncnpcp1]E z } (7.24)

T—0 n>1 Enl p>n#l plLnl
~ _ 43 |C1n|2 _ 2 2
uo = —4V5 | Y, —5-1(c11 —cun)® —le1nl’]

T—0 n>1 Enl

+ Z C11C1nCnpC ! < ! ! )—i— Z Re[CmmCm1€1pCpm| ——— !
11¢1nCnptpl 2 e mmtml1C1pCpm| -5
n#p>1 Ey, E E m#p>1 E E pl

y ’C1n|2|01p’2( ) Y'Y Y cuncarca 1 1
EnEpr \E 1 En P E EnpEg

p>n>1 n>1 p>1 g>1
p#EnqFn,p

It follows from equation (6.88) that the magnetization in terms of the rescaled field is

(8%) = ($%0+(Q)o, (7.25)

with the subscript O indicating an average with respect to the MF Hamiltonian, and the sub-
script Q indicating an average with respect the Landau free energy function given in equation
(7.21), which ignores the frequency and momentum dependence of the fluctuations, and their
interactions. We use the tilde on the coefficients of the effective field theory because they rep-
resent the energy cost of the fluctuation field Q. As shown in equation 6.28, these parameters

are related to the parameters of the field theory for (S%) by

ro = 7o +280(S%)0 + 9t (5%)§
80 = 80+ 3up(S%)o
uy = u. (7.26)

The Landau energy function given in equation (7.21), which is derived from a microscopic
model, is amenable to treatment via the renormalization group. The methods used here are
more rigorous then obtaining an effective field theory based solely on symmetry considerations.

The Landau coefficients, ry, go and up, may be used to estimate the size of the region in
which fluctuations of the order parameter will play a significant role in a quantum Ising system.
In order for the Gaussian approximation to be valid, we require r( > g, ug. In Figure 7.2, we
plot the Landau coefficients for the spin half transverse field Ising model (TFIM) as a function
of the transverse magnetic field. The left hand plot shows the coefficients in the absence of
a longitudinal magnetic field, and the right hand plot shows the coefficients in the presence

of a longitudinal field having the same strength as the nearest neighbour exchange interaction
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between spins. The TFIM is discussed in Section 7.2. We find that, in the absence of a longitu-
dinal field, the point at which r and gy cross corresponds to the point at which corrections due
to fluctuations begin to have significant impact on the longitudinal magnetization (the order
parameter) of the system, shown in Figure 7.4. When a longitudinal field is applied, we see
that ry > go, ug for any value of the transverse field, hence the system is stabilized against order

parameter fluctuations, in line with our expectations.

Landau Exponents of the TFIM

; Landau Exponents of the TFIM in a Longitudinal Field
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Figure 7.2: In this figure, we plot the Landau exponents, r(, go, o given in equations 7.23
and 7.24, of the effective field theory for the transverse field Ising model at zero
temperature, as a function of the transverse field A. The figure on the left shows the
system in the absence of a longitudinal field, whereas the figure on the right shows
the exponents in the presence of a longitudinal field of 4 = J,,,, where J,, is the
nearest neighbour exchange interaction between the spins.

In Figure 7.3, we plot the Landau coefficients of the spin half spin half model (SHSH)
in the left hand plot, and for LiHoF, in the right hand plot. The SHSH model is given in
equation (7.37). We take € = 0, so that there is no transverse field acting directly on the
nuclear spins, and consider a weak isotropic hyperfine interaction, A, = A, = 0.01J,,,, where
Jun 1s the strength of the exchange interaction. In this limit, one might expect the Landau
coefficients to reduce to those of the TFIM; however, comparing the ug function of the SHSH
model with that obtained from the TFIM, we find this is not the case. The discrepancy between
the two plots persists even when the hyperfine interaction is further reduced. The reason for
this is that, at the MF level, when the hyperfine interaction is taken to zero in the SHSH model
the Hamiltonian consists of two disjoint copies of the TFIM, with each copy corresponding
to a different nuclear spin state. The interaction term in the Hamiltonian couples these two
subspaces. That is, a fluctuation in one nuclear subspace may have an effect on the other
nuclear subspace. These additional degrees of freedom are not present in the TFIM. In the

plot of the Landau coefficients of LiHoF, on the right hand side of Figure 7.3, it appears that

145



the fluctuations will only play a role in a narrow region around the quantum critical point. A
glance at the plot of the longitudinal magnetization of LiHoF, shown in Figure 7.6 indicates
this is not the case. The problem is that the Landau MF field theory fails to take into account
the frustrated long range nature of the dipolar interaction, which causes the LiHoF, system to
be significantly more susceptible to the effect of fluctuations than is indicated by the Landau
MF theory. The condition rg > g, uq is necessary for the effect of fluctuations to be small;

however, as the LiHoF, system demonstrates, it is not sufficient.

Landau Exponents of the SHSH model

Landau Exponents of LiHoF4
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Figure 7.3: In this figure, we plot the zero temperature Landau exponents, g, go, #o given
in equations 7.23 and 7.24, of the effective field theory for the spin half spin half
model (left) and LiHoF, (right), as a function of the transverse magnetic field. For
the spin half spin half model, given in equation (7.37), we assume a nearest neigh-
bour exchange interaction J,, between spins, and we assume there is no effective
field acting directly on the nuclear spins (¢ = 0). We assume a weak isotropic hyper-
fine interaction A, = A | = 0.01J,,. The LiHoF; Hamiltonian is given in equation
(7.39).
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Spin Half Transverse Field Ising Model

We now apply the theory developed for including the effects of fluctuations in quantum Ising
systems to find the leading order zero temperature correction to the magnetization of the spin
half transverse field Ising model. This may be compared to the result of Stinchcombe given in
equation (2.43) of [63]. We note that Stinchcombe’s result is obtained by differentiating the
free energy given in equation (6.82), rather than evaluating equation (7.1), so the following
calculation is an independent consistency check of the theory.

For a spin half system, the leading order zero temperature correction to the magnetization

is given by
AU Ro 2
(81 =5 Y V(e —en)lena|*As, (7.27)
2N <
where
E2
Ry=—2L, (7.28)
Eio
and, assuming the RPA mode and mean field energy level are not degenerate,
—2E 3E3, —E} 1
As 2l T2l k (7.29)

22 2 2 B

Ef—Ey By —E; B
The MF matrix elements, energy levels, and RPA mode are derived in Appendix B.
The correction to the MF magnetization vanishes in the paramagnetic phase of the sys-
tem, so we will focus on the ferromagnetic phase. Following Stinchcombe [63], we make the

following definitions

_2A

V%
=T

ORE (7.30)

X

where A is the transverse field acting on the system. In terms of these parameters, in the

ferromagnetic phase of the system, we find

A A
Ey == Ep=—=y/1—x2y(k). (7.31)
X X

Plugging these values into A3 yields

2 {lJr%xzy(k) _1]

As= ENINE= x2y(k)

(7.32)
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For the prefactor and matrix elements we find

[\

X 1
Ro(c11 —cx)|enn]* = (7.33)

4i-2

Putting everything together yields

. 1 Z 1+%x27/(k)
(59, = WIS imm
0 A> A,

— 1] A <A,
(7.34)

which is in agreement with equation (2.43) of Stinchcombe [63]. We see that the prefactor Ry,
which is missing from equation (2.10) of Stinchcombe [62], is required to obtain the correct
result. We see that the approximation breaks down as x — 1, or, equivalently, as A — A.. This
is to be expected because in the critical region fluctuations contribute at all orders, and cannot
be neglected. The Landau function discussed in Section 7.1 is suitable for a renormalization
group treatment of a system’s critical behaviour.

We now specialize to the case of a simple cubic crystal, with lattice spacing a, and a nearest
neighbour exchange interaction. In this case, we have Vi = 2J[cos(kca) + cos(kya) + cos(k.a)],

and y, = g—j. The MF magnetization in the ferromagnetic phase of the system is

(80 = l\/ 1—x2, (7.35)

2

with x = 3%, and the leading order correction to the longitudinal magnetization in the ferro-

magnetic phase is

(S =

I { Ly 1} (7.36)

—4N<sz>0§ 1—2y(k)

In Figure 7.4, we plot the MF magnetization of the transverse field Ising model, along
with the leading order correction calculated from equation (7.36). We see that the correction
becomes unreliable, and, in fact, diverges near the quantum critical point, where fluctuations
become important. The leading order correction to the critical value of the transverse field
follows from the point at which the corrected magnetization reaches zero. As discussed by
Stinchcombe in [63], the correction to the transverse field is consistent with the result obtained
by considering the transverse magnetization, or the longitudinal static susceptibility, neither
of which suffer from the divergence seen in the corrected magnetization. We find for the

transverse Ising model the critical transverse field is about 95% of its MF value.
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Longitudinal Magnetization of the TFIM

<[>

Figure 7.4: In this figure, we plot the mean field longitudinal magnetization of the trans-
verse field Ising model (dashed line), along with the leading order correction in the
high density approximation calculated from equation (7.36), as a function of the
transverse field A. We consider a simple cubic crystal with exchange interaction
strength J. We see the theory breaks down in the vicinity of the critical transverse
field where fluctuations become more important. The point at which the corrected
magnetization reaches zero gives the leading order correction to the critical trans-
verse field. We find A, ~ 2.84J.

Spin Half Spin Half Model

In this section, we calculate the leading order correction to the MF magnetization of the spin

half spin half model

= ——ZVijSZ AZ(SX—EIX) +A; ZIZSZ Z (LS +17S). (7.37)
l;éj i

We include a transverse field A, = €A acting directly on the nuclear spins because in systems
such as LiHoF,, the effective transverse field acting on the nuclear spins can be a significant

fraction of the effective field splitting the electronic levels. We take our interaction to be
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with DfJZ being the longitudinal dipolar interaction, and J,,,, being a nearest neighbour exchange
interaction. We assume a long thin cylindrical sample, or needle like domain, in a material with
a simple cubic Bravais lattice. In this case, as discussed in Chapter 3, the dipolar interaction is

given by (in momentum space)

~

T k=0

3 3
T 47”%”(1—3%) k#0

with a being the unit cell length. At k = 0, we have the Lorentz local field, and no contribution
from the demagnetization field, which is zero in a long cylinder. Away from k = 0, we use the
result for a spherical sample, which is valid provided kR >> 1, with R being the system size.
In momentum space, our total interaction will be Vi = JpDi* — 2J,,[cos (kca) 4 cos (kya) +
cos (k;a)]. In this toy model, we allow both Jp and J,, to be tunable parameters. This allows
us to investigate how the competition between dipolar and exchange energies (ferromagnetic
for J,,, < 0, or antiferromagnetic for J,,,, > 0) affects the magnitude of the corrections to MF
theory. We may also reduce the overall strength of the interaction, V;, — pV;, with p < 1, in
accordance with what is expected if some of the magnetic ions in the crystal are doped with
non-magnetic impurities.

We take Jp =0 and € =0, and we set A, = A . This corresponds to an exchange coupled
transverse field Ising model with an isotropic hyperfine interaction. The calculation of the
leading order correction to the magnetization, given in equation (7.17), involves summations of
complicated functions over the MF energy levels and the Brillouin zone. We do the summations
numerically. In order to test that the numerical summations are correct, we consider the SHSH
model with A, = A = 0.01J,,. With this small value of the isotropic hyperfine interaction,
we expect that the results will be similar to the result for the transverse field Ising model with
no hyperfine interaction, which is illustrated in Figure 7.4, and indeed, this is the case. The
program used to calculate the summations in the SHSH model is easily adapted to systems
with Hamiltonians containing more MF eigenstates, such as LiHoF,. In Figure 7.5, we plot the
MF magnetization and corrected magnetization of the SHSH model with A, =A | = 0.01J,,.
We leave further investigation of the effects of fluctuations in the SHSH model as the subject

of future work.
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Longitudinal Magnetization of the SHSH Model
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Figure 7.5: In this figure, we plot the MF magnetization of the spin half spin half model
given in equation (7.37), along with its leading order correction in the high density
approximation calculated from equation (7.17). We set the dipolar interaction to
zero, and assume no transverse field acting directly on the nuclear spins. We assume
an isotropic hyperfine interaction, with A, = A | = 0.01J,,.

LiHoF4

In this section, we obtain the leading order correction to the longitudinal magnetization of

LiHoF,, using the effective low temperature Hamiltonian

A 1
H=— EZTZ?‘— 5JD ZDZZTZTZ —J C2 Y TET+ (7.39)

ijoi7)
<ij>

+ZA T+ A, ZTZIZJFALZTJFI + A" Zr LM+

+A++Zr,.+1i+ +AT +Zr I
i

All the parameters in the model are given in Chapter 2. The longitudinal magnetization is given
by J* & C;;(1%)0 + C;; (1)1, where (1%)¢ is the MF expectation value of the Pauli operator 77,
and (%)) is given by equation (7.17). The interaction in equation (7.17) is given by V} =
sz [JDDiZ — JunY), and all the relevant matrix elements, MF energy levels, and RPA modes are
calculated in Chapter 5.
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B, 40T | 49T 54T 6.0T
(%o 3.2293 | 1.7784 | 2.8 1077 | 3.0 1078
N=20

(J%o+ (J5) | 1.5102 | -2.8062 | -1.0 107> | -8.2 x1078
N=30

(J9o+ (J%)1 | 1.4951 | -2.8502 | -1.0 x107> | -8.3 1078
N=40

(J3o+ (J5) | 1.4873 | -2.873 | -1.0 %107 | -8.4 x1078
N=50

(J3o+ (J5)1 | 1.4825 | -2.8869 | -1.0 107> | -8.4 x10~8

Table 7.1: In this table, we show corrections to the mean field magnetization of LiHoF,
calculated using the high density approximation. Each column corresponds to a
different value of the applied transverse magnetic field B,, and each row corresponds
to a finer division of the Brillouin zone (a larger value of N in equation (7.40)).

This calculation is complicated by the Brillouin zone summations. We perform the summa-
tions by brute force, summing over finer and finer divisions of the Brillouin zone until suitable

convergence is achieved. We carve up the positive quadrant of the Brillouin zone as follows,

Ky, k
kkay € |:07 > ’ E:|

k, w
N k, € {0,—2 —}, (7.40)

N’ c

where a = 5.175A, and ¢ = 10.75A, are the transverse, and longitudinal, lattice spacings of
LiHoF,. All other Brillouin zone points may be included via symmetry considerations. We il-
lustrate the convergence by looking at four values of transverse magnetic field, 4.07,4.97,5.4T
and 6.07". These represent points in the ferromagnetic phase of the system, at the experimental
value of the critical transverse field, at the MF value of the critical transverse field, and in the
paramagnetic phase of the sytem, respectively. In Table 7.1, we list the corrected magnetiza-
tion for N = 20,30,40, and 50. The point to take from the table is that, even for our most
coarse division of the Brillouin zone (N=20), the sums are converging to within two significant
figures, with the least reliable correction being near the experimental critical point where the
correction diverges.

In Figure 7.6, we plot the longitudinal MF magnetization of LiHoF,, along with the leading
order correction in the high density approximation calculated from equation (7.17). Due to
the frustrated long range nature of the dipolar interactions in LiHoF4, we expect the effect
of fluctuations to be significant, and indeed, we find this to be the case. We also expect,
due to the long range nature of the interaction, that the leading order correction in a high

density approximation will be accurate, except in the vicinity of the critical point where the
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formalism breaks down. The experimental value of the critical transverse field is B{ = 4.9T.
The leading order correction to the magnetization gives a critical value of the transverse field of
about B{ = 4.4T, significantly underestimating the experimental value. It is not clear whether
this discrepancy is due to the choice of crystal field parameters, and the magnitude of the
exchange interaction, or whether it is a shortcoming of the approximation. The reduced critical

temperature in this approximation is about 81% of its MF value.

Longitudinal Magnetization of LiHoF,
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Figure 7.6: The figure above shows the MF longitudinal magnetization of LiHoF4
(dashed line), along with the leading order correction calculated from equation
(7.17), as a function of the transverse field B,. The point at which the corrected
magnetization reaches zero gives the leading order correction to the critical trans-
verse field. We find B ~ 4.4T. The experimental value of the critical transverse
field is BS = 4.9T; hence, with our choice of crystal field parameters, and near-
est neighbour exchange interaction, the leading order correction underestimates the
critical transverse field by about as much as it is overestimated by MF theory.
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Summary

In this chapter, we have the high density approximation developed in Chapter 6 to find the
leading order correction to the magnetization of several quantum Ising systems. We began by
discussing the form of the correction to the magnetization for a general quantum Ising system,
and then, in Section 7.1, we discussed how to derive a Landau free energy function from our
more general formalism. The coefficients of the Landau theory may be used to estimate when
fluctuations will have a significant impact on a quantum Ising system.

In Section 7.2, we applied the theory to the spin half transverse field Ising model (TFIM),
making contact with the results derived by Stinchcombe in [63]. In Section 7.37, we applied
the formalism to the spin half spin half (SHSH) model. The calculation of the corrections to
the MF magnetization involves Brillouin zone summations over complicated functions. By
considering the SHSH model with a small hyperfine interaction, we reproduced the results
obtained for the TFIM, which verifies the program used to calculate the numerical summations
is correct. Section 7.4 is concerned with the application of the theory to the magnetic insulator
LiHoF,. We found the corrections to MF theory to be quite large, which is to be expected in a

dipolar coupled system.
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Chapter 8
Conclusions and Future Work

The work in this thesis can be divided into two main parts: (1) the properties of the magnetic
insulating crystal LiHoF4, and (2) the development of a formalism for incorporating the effect
of fluctuations in general quantum Ising systems, of which LiHoF;, is a particular example.

Regarding (1), we have introduced a new effective low temperature Hamiltonian for LiHoF4
that fully incorporates the nuclear degrees of freedom in Chapter 2. We find that the dominant
mixing of the hyperfine states is due to an effective transverse field acting directly on the
nuclear spins. This field is an order of magnitude larger than the effective transverse component
of the hyperfine interaction. The origin of this effective field is a shift in the 4f electron
cloud of each Ho>" ion due to an applied transverse magnetic field. Chapter 3 contains an
analysis of the dipole-dipole interaction that is the dominant coupling between the electronic
degrees of freedom in LiHoF4. The Fourier analysis of the long range dipolar interaction,
taking into consideration the underlying lattice of the LiHoF, crystal, is an important aspect of
the theoretical investigation of the material.

In Chapter 4, we present the spin half spin half (SHSH) model

ZV,]SZSZ AZSerA ZSZIZ Z (STI7+8711), (8.1)
i

a toy model meant to illustrate the effects of an anisotropic hyperfine interaction in a transverse
field Ising system. We find that A, > A | leads to an enhancement of the single ion susceptibil-
ity, an increase in the critical transverse field, as well as an enhancement of an applied longi-
tudinal field. The enhancement of a longitudinal field has not been previously noted. With the
addition of a transverse field acting directly on the nuclear spins, equation (8.1) serves as a toy
model for LiHoF4. We go on to analyze the zero temperature spectrum of the SHSH model in
the random phase approximation (RPA). We find that what would have been the electronic soft

mode is gapped by the hyperfine interaction, with spectral weight being transferred to a lower
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energy electronuclear mode that fully softens at the quantum critical point. In Chapter 5, we
perform an RPA analysis of the LiHoF, system, observing behaviour of the low energy modes
similar to that of the toy model.

Regarding (2), we have made use of the well known Hubbard-Stratonovich transformation
to derive an effective field theory for quantum Ising systems with an arbitrary single ion Hamil-
tonian in Chapter 6. This formalism is used to derive a diagrammatic perturbation theory for
incorporating the effects of fluctuations in quantum Ising systems beyond the RPA. We find
the formalism to be equivalent to the high density approximation of Brout [60, 61], which has
been applied to the spin half transverse field Ising model by Stinchcombe [26, 62, 63]; how-
ever, the field theoretic derivation offers significant simplicity and clarity when compared to
previous approaches. Basically, in this thesis, we have taken a ground up approach. We have
used the Hubbard-Stratonovich transformation to obtain an effective field theory suitable for
renormalization group analysis of a system’s critical behaviour, and we have worked in a basis
of mean field eigenstates (Hubbard operators) in order to rigorously obtain the theory. We find
that a regular nuclear spin bath, or any other regular modification to the single ion Hamilto-
nian, will not fundamentally alter the nature of the quantum phase transition in a transverse
field Ising system. The strength of the field theoretic formalism developed in this thesis is its
versatility. It is easily applied to real quantum Ising ferromagnets such as LiHoF,4, and the
formalism may be generalized to study antiferromagnetic materials and spin glass, as well as
offering the possibility of studying quantum Ising systems in time dependent potentials. We
have demonstrated the validity of the formalism by applying it to the calculation of corrections

to the zero temperature magnetization of LiHoF, in Chapter 7.

Future Work

The work presented in this thesis, in particular the field theoretic formalism presented in Chap-
ter 6, has many interesting applications beyond the scope of what is presented in this thesis.
Furthermore, there remain many fascinating possibilities for further research on LiHoF4. We
conclude this thesis with a discussion of this future work. To begin, we discuss some easy ap-
plications of the random phase approximation (RPA) to LiHoF, that we have left undeveloped.
We proceed to consider a fluctuation analysis of LiHoF, that goes beyond the magnetization
corrections presented in Chapter 7, and some interesting modifications of the Hamiltonian for
future deliberation. We move on from LiHoF, by discussing some possible improvements of
the field theoretic formalism presented in Chapter 6, and outlining a few of its most significant
applications.

Our primary focus in this thesis has been on the behaviour of quantum Ising systems in
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the zero temperature limit. The RPA results for the spin half spin half (SHSH) model, and
for LiHoF,, presented in Chapters 4 and 5 respectively, are easily generalized to finite tem-
peratures. The SHSH model will yield analytic expressions for the temperature dependence
of experimentally relevant quantities, such as the paramagnetic susceptibility. Furthermore,
our analysis of the SHSH model and LiHoF,4 has been focused on the dynamic longitudinal
electronic susceptibility, which is relevant to, for example, neutron scattering experiments. A
calculation of the transverse electronic susceptibility, and the specific heat, is straightforward,
and would be of experimental interest, as would a calculation of the nuclear susceptibilities.
The dynamic nuclear susceptibilities, or equivalently, the nuclear correlation functions, are of
particular interest as they are relevant to magnetic resonance experiments that may be used to
probe the low energy properties of the LiHoF, system. See the paper of Schechter and Stamp
for further details [38].

Our fluctuation analysis of quantum Ising systems in Chapter 7 is limited to the zero tem-
perature magnetization, this being the simplest application of the field theoretic formalism. We
would like to see these calculations generalized to finite temperatures, and we would like to
see the field theoretic formalism applied to the calculation of dynamic correlation functions,
which yield the energies and lifetimes of excited states. The groundwork for such calculations
has been laid out in Chapter 6 and Appendix E. In particular, it would be interesting to use the
field theoretic formalism to see if the longitudinal hyperfine interaction in LiHoF, stabilizes the
system against the disordering effects of thermal fluctuations, or a transverse magnetic field.
In low transverse fields, this may account for the discrepancy between the experimental phase
diagram and the phase diagram that has been obtained from Monte Carlo simulations [69].
Using the effective low temperature Hamiltonian for LiHoF,, derived in Chapter 2, it would
also be of interest to compare results obtained from the field theoretic formalism of Chapter
6 to results obtained using the effective medium theory of Jensen, results obtained using the
correlated effective field approximation of Lines, and results obtained via Monte Carlo simula-
tions. The formalisms of Jensen and Lines are discussed in the introduction to Chapter 6. The
role of fluctuations when there is competition between dipolar and exchange interactions, such
as in LiHoF,, is another interesting avenue for future work. The SHSH model, as presented in
Section 7.3, is amenable to such an investigation.

Regarding the LiHoF, Hamiltonian derived in Chapter 2, we would like to see it analyzed
with modifications to account for doping of the system with non-magnetic yttrium ions, and
the inclusion of an oscillator bath environment. A preliminary theoretical investigation of the
effect of doping has been carried out by Schechter and Stamp [37, 38], and of the effects of
an oscillator bath environment by Banerjee and Dattagupta [94]; however, none of this work

takes full account of the complexity of the low temperature LiHoF, Hamiltonian. In the work of
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Banerjee and Dattagupta, only a longitudinal hyperfine interaction is considered. Schechter and
Stamp consider transverse hyperfine interactions; however, the effective transverse field acting
directly on the nuclear spins upon application of a physical transverse field is not apparent in
their work. Furthermore, we would like to see the model used to calculate the dynamics of the
system with time dependent parameters, thus going beyond the thermodynamics that has been
the primary focus of this thesis. In particular, we would like to see the model used to calculate
Landau-Zener transitions, and the effects of an AC magnetic field.

We have discussed some possibilities for future research on LiHoF, relevant to the work
done in this thesis. We now consider the field theoretic formalism of Chapter 6, and some of
its potential applications apart from the LiHoF, system. The primary drawback of the field
theoretic formalism is the algebraic complexity of the resulting equations, and the need to per-
form Brillouin zone summations over complicated functions. The algebraic difficulties stem
from the calculation of the spin cumulants that make up the coefficients of the field theory.
Simplifications, or approximations, of the spin cumulants would be of considerable use. In
order to utilize the field theoretic formalism, it would be useful to optimize the time required to
perform the Brillouin zone summations necessary for acquiring results. In this thesis, the Bril-
louin zone summations have been performed by brute force. Consideration of the symmetry of
the underlying crystal lattice will lead to improvements over the brute force approach.

A simple application of the field theoretic formalism, to a system with more complexity

than the spin half transverse field Ising model, is to the Blume-Capel model

_ 2 7 q
H= —DZ(I —(5%) )+HZS,-+J<Z§S§S§., (8.2)
l l 1

where we take S to be spin one. In a spin one system, the spin cumulants, and hence the
coefficients of the effective field theory, will be more complicated than in the spin half case;
however, they will be much simpler than in a system with four or more single ion energy levels.
The parameter D may be used to control the number of S = 0 states occuring in the system.
With D = —eo the model reduces to the spin half case, and with D = 0 we have a standard spin
one Ising system. This model was introduced in 1966 by Blume in an attempt to model the
antiferromagnetic insulator UO; [114], and more generally in a series of papers by Capel to
account for the behaviour of triplet (S = 1) spin systems [115-117]. A variant of the model
was introduced by Blume, Emery, and Griffiths in an attempt to model He® — He* mixtures
[118]. As discussed in the book of Cardy, the Blume-Capel model may also be used to study
a spin half system with mobile vacancies corresponding to the $¢ = 0O states [119]. This model
is of interest in the study of phase transitions because the order of the phase transition depends

on the parameter D. We would like to see the field theoretic formalism of Chapter 6 applied to
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the interesting and versatile Blume-Capel model.

In the development of the field theoretic formalism of Chapter 6, we have limited ourselves
to the consideration of ferromagnetic interactions between spins. We may equally well consider
antiferromagnetic interactions; however, the field in the resulting theory is no longer a valid
order parameter. Instead, if the system has a bipartite lattice, we must consider the staggered
magnetization which corresponds to making the field transformation Q — (—1)”7”Q, where
||7|| is even or odd depending on which subsytem the vector 7 points to. For example, in the
antiferromagnetic Ising system DyPOy, discussed by Wright er al. in reference [120], ||7||
is the minimum number of lattice steps between the origin and the lattice point at 7. With a
suitable modification of ||7|| it is possible to study layered antiferromagnetic materials such as
FeCl,, the properties of which are discussed in a chapter of the book by Barbara et al. [71].
This material is of particular interest because the Fe ions may be replaced with non-magnetic
Mg ions in Fe,Mg;_,Cl,. This leads to random field effects in the presence of a longitudinal
magnetic field, as discussed by, for example, Fishman and Aharony, and Cardy [121, 122].
These random field effects are reminiscent of the random field effects in LiHo,Y{_,F4, in
which dilution leads to a random field via the off diagonal components of the dipolar interaction
[37].

The quenched nature of the disorder in dilute quantum Ising systems, such as Fe,Mg;_,Cl»
and LiHo,Y_,F4, may be accounted for using the formalism of Chapter 6 by making use of
Anderson’s replica trick [43]. As discussed by Stephen and Aharony [123], by considering a set
of nreplicas of the system, and first averaging over the disorder, then expanding and resumming

the resulting equation, the partition function may be written Z(n) = Zy(exp (—B.5¢)), with
H =) Y Ki(ij)fi(i)). (8.3)
ij 1

The coefficients K;(ij) are functions of the interaction and the concentration of dopents, and

Z SiaSia =) SiuS5aSipSs (8.4)

a<f
P — 74 74 Z 74 Z
fl(lj) Z SlalstClSlOCszOCz SlOtZSjOtz
<oy
where the summations are over the n replicas of the system. A Hubbard-Stratonovich trans-
formation may now be applied to each of the / terms in equation (8.3), which yields a set of
competing order parameters for the system. The work in this thesis provides a way to carry out
the procedure for real magnetic systems such as LiHo,Y_,Fj4.

In the work presented in this thesis, we have not considered Hamiltonians with time de-
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pendent parameters. A time dependent longitudinal magnetic field is easily included in the
field theoretic formalism Chapter of 6, with the assumption being that the system remains in
thermodynamic equilibrium so that at each moment in time Z(r) = (exp (—BH(¢))) yields the

distribution of the system. Note that in the Matsubara formalism we have

Z= ZO<TTexp {/Oﬁ drV(r)} >0. (8.5)

This encodes corrections to the free energy, F' = —%an, due to both spatial and temporal

fluctuations. With the time dependent part of the Hamiltonian included in V(7), our basis of
eigenstates is time independent. However, the formalism contains memory effects through the
time dependence of V(7). A preliminary investigations shows that the time dependence yields
a shifted free energy with a complex part corresponding to the decay rate of the collective spin
wave excitations. We see this as an interesting and fruitful avenue for future research.

We have discussed further research to be done on the magnetic insulator LiHoF,, as well as
some of the future applications of the field theoretic formalism developed in this thesis, which
is suitable for treating general quantum Ising systems. This includes applications to disordered
systems, and systems with time dependent parameters. We think these topics will be among
the most important physics of the 21st century, and would welcome the opportunity to pursue

this research further.
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Appendix A

Mean Field Basis Operators

In this appendix, we explore some of the properties of the mean field (MF) operators, often
referred to as standard basis operators, or Hubbard operators, in the literature. These operators
can be traced back to the 1965 work of Hubbard, in which operators acting between a discrete
set of energy levels at each atomic site were used to analyze correlated electron systems [124].
In 1972, Haley and Erdos reintroduced these operators, and presented a formalism that was
subsequently developed by Yang and Wang in 1974 [102, 125]. Here, we give some of the
basic properties of the MF operators, and present Yang and Wang’s general reduction scheme
for time ordered products of the MF operators. Further discussion of the MF basis operator
formalism is provided in the introduction to Chapter 6. We only consider products of MF basis
operators belonging to a single site because, as is shown in Section 6.3.1, considering MF basis
operators belonging to different sites is unnecessary in the formalism developed in this thesis.
We use the reduction scheme to calculate general expressions for the correlation function of
products of up to four MF operators. These are necessary for deriving the spin cumulants of
up to four spin operators in Appendix E.

Consider a Hamiltonian of the form
Ho=YY) EnLp, (A1)
i n
where we define the MF operators to be
Ly, = |m)(n|, (A.2)

where |m) and |n) are MF eigenstates of the system. The superscript i is a site index, and the

summation in 7 is over all MF eigenstates of the system. Note that any single site operator may
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be expressed in this basis; for example, we may write
§°=Y" cunLmn- (A.3)
mn
In the Heisenberg picture, the MF operators will be time (or imaginary time 7) dependent
Ly (7) = 7L, 0 HoT (A.4)
Following reference [102], we note the following identities
Ly (t) = En )7L, e PIL,, (1) = e PEEIL,, (1)ePHo (A5)
and
[Lpg ('), Linn(7)] = elEn—En) (7T [Lpg ('), Linn (7). (A.6)
We now define the imaginary time ordered correlation function of the MF operators to be
~(TeLun(T") Lin (T)) = DKy, (T — 7). (A7)

Noting that (L, (T )Ly (7)) = (Linn(T)Lum(T') + [Lum(T'), Lmn(7)]), and using the identities
(A.5) and (A.6), we find

(Em*En)(Tlir)[l —|—n(Em _El’l)]a T/ > T

0 (.1 _Je
Ky (7' —7) —{ e~ En—ED (T =T p(E, — E,) o1 (A8)

where n(E) = (ePF — 1)~ is the Bose distribution function. We will refer to K (7’ — 1) as the

MF Green’s function. The coefficient D,,, is a population factor, with D,,,, = D,, — D,,, where

efﬁEm
D, = <me>0 = 7 s (A9)
0
and the MF partition function is
Zy = Tr[e PH0] = Tr[e PLoFalun] = Y o =PEn, (A.10)

Note that all the above is valid provided we are not dealing with degenerate energy levels. If
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E, =E,, we find
~(TeLun (') Linn (7)) = —Dhn. (A.11)
Accounting for degenerate levels, we may write
~(TeLyn(T) Linn (7)) = DnK o (7' — ©) — Dy G- (A.12)

Note that D,,, = 0 when the energy levels are degenerate. In this thesis we are primarily
concerned with systems with a discrete set of non-degenerate single ion energy levels; hence,
the degenerate case is ignored in subsequent discussion.

In frequency space, the MF Green’s function K¥, is given by

1
;) = dtk,, et / dtk I A.13
(iex / Ey— E, — i, A1

2rm

where @, = <5* are the usual Bose-Matsubara frequencies. Note that K (iw,) = —K° (—iw,).
The inverse Fourier transform of the MF Green’s function is given by

e 10T
KO

n( =5 Z o —— (A.14)

Furthermore, we define the MF propagator for transitions between energy levels m and n to be

2Eun

Konn (%) = (Ko () + K (= 7)] Kn(it0) = 2057 (A.15)

This function will be frequently encountered in our analysis of magnetic systems.

Finally, for completeness, we consider the case K, (T = 7'). We find K0, (0) = 3 +n(E, —
E,) and

Dmn

1
5 4 Dy (En — E) = —5 (D +Dy). (A.16)

—(TtLum (T)Lin (7)) =

The expressions above are sufficient for calculating properties of spin systems within the
random phase approximation (RPA). In order to include the effects of fluctuations beyond the
RPA, it is necessary to consider higher order correlation functions of the MF operators. We

begin by stating Yang and Wang’s general reduction theorem for time ordered averages of the
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MF operators [102]. Let O(7) = L,,,(7) be an arbitrary MF operator. Then

(T:O(71) -+ -Linn(7T) - O(T;) )0 (A.17)
= Ky (11 = D(Te[O(T1), Linn(T1)] - - O(:) )
+ K (22 = ©)(Te0(11) [0(%2), Lyn(T2)] -+ - O(T:) o
o+ K (5= T)(TeO(T1) -+ [O(T:), Lnn (%)) o-

In the above expression, we have reduced an average over a set of i + 1 MF operators to a
sum of averages over i MF operators. This process can be repeated until we are left with only
averages of diagonal operators L,,,(7), which simply contribute population factors. Note that
the reduction is not unique because we may start the process with whichever MF operator we
choose, leading to different, but equivalent, algebraic expressions for the relevant correlation
function. Subsequent calculations in the zero temperature limit are often simplified by starting
the reduction with L,,, such that m is minimal, which is the convention we will adopt here
unless otherwise noted. We now use the reduction scheme to calculate correlation functions of
three and four MF operators.

At third order we must consider the following terms:

<TTme(Tl)me(TZ)me(T3)>O <T1me(fl)Lmn(TZ)an(TB»))O
(TeLynn (1) Lip (T2) Lpm (73) )o-

Of course, under the time ordering operator, any permutation of the operators is also allowed.
The first term simply gives a factor of Dy,. In the following, we set 7; — 7; = 1;; for brevity.
The second term yields (assume n > m)

(Tt L (T1) Linn (72) L (73) )0 = —DyunK oy (712) Ko (T31) — DKo (132), (A.18)

and, for the third term, we find

<T1Lmn(71)an(TZ)me(T3)>O (A.19)

= =D pKy, (131)KD, (123) + DKoy, (21 Ky (123).
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At fourth order we must consider:

(T Lunm (71 ) Linm (72) Linm (T3) Lim (T4) Yo (A.20)
(TeLunm (1) Lyn (T2) Linn (73) Lym (74) o (Te Lo (1) Ly (2) Linn (3) Lym (74) o
(TeLynm (T1) Linn (72) Lp (T3) Lpm (T4) )0 (TeLynn (1) Lum (T2) Linn (T3) Lum (T4) )0
(TeLynn (T1) L (72) Linp (73) Lpm (T4) )0 (TeLynn (1) Linp(72) Lpg (73)Lam(T4))o-

Under the time ordering operator all permutations of these operators are also allowed. The first

term simply gives a factor of D,,. The second and third terms are given by

(TeLynm (T1) Linm (T2) Lipn (T3) Ly (T4) )0 (A.21)
= Ko (113)(TeLon (T1) L (72) L (14) o
+ K (723) (T Ly (T1) Lin (T2) L (74) )0 — DKo (T43)
(TeLynm (71 ) Lin(72) Linn (73) Ly (T4) )0
= Koy (713) (TeLinn (71) Ln (22) L () )0
— Koo (723) (TeLonn (T1) Linn (%2) L (7)),

where the contractions of three operators may be read from equations (A.18) and (A.19). The

remaining fourth order contractions are given as follows

(TrLyum (T1) Linn (72) Lnp (T3) Lpm(T4) )0 (A.22)
= Ko (712) (TeLinn (71) L (73) Lpm (T4) o
— K (732) (Te L (1) L (3) L (74) )0
(TeLinn(T1) Lyum (T2) Linn (73) Lum (T4) )0
= K191n(723)<T1Lmn(Tl)[Lnn(TZ) — Linm(T2)| L (T4))o
+Kr(r)zn(f43)<TTLmn(Tl)an(T2)[Lm’l(T4) — Linm(4)])o
(TeLynn (T1) Ly (72) Linp (73) Lpm (1) )0
= — K3, (721) (T Ly (T2) Linp (T3) Lym (T4) o
+ Ko (1) {TeLm (%2) Linp (%) Lpn (T4) o
(TrLynn(T1) Lnp (T2) Lpg(T3) Lgm(T4) )0
= —Knn (721) (TeLinp (%2) Lpg (73) Lgm(74)) 0
+ Ko (T41) (TeLnp (2) Lpg (%) Lgn (1) Do

By starting the reduction with L, in the first equation in expression (A.22), expressions for
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spin correlations and cumulants simplify in the low temperature limit. Starting with L,, we
find

<T’L'me(T1 )Lmn<72)an(T3)me(T4)>O (A23)
= Kpp(223) (T L (71) Linp (%2) L (7))
- K,?p(f43) <T1;me(’1'1 )Lmn(TZ)an<T4)>0-

The expressions derived here for contractions of three and four MF operators will be used
in Appendix E to derive spin cumulants. It is the spin cumulants that play a central role in the

analysis of fluctuations in magnetic systems, as was shown in Chapter 6 of this thesis.
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Appendix B

Transverse Ising Model

Here we consider the spin half transverse Ising model in the absence of any coupling to nuclear

spins

%:-%ZV,-,S,%Sj.—AZSf—hZS;, (B.1)
i#] i i

where § = %? are spin half operators, and 7 are the Pauli matrices. We analyze the model using
the mean field (MF) operators presented in Appendix A. The results here are well known;
however, we present them to illustrate the use of the MF operators, and so that the resulting
equations are available for reference in this thesis.

The Hamiltonian may be divided into the MF part and the fluctuating part, 7 = Jr +
. The MF part of the Hamiltonian is given by

Hp =—AY Sf—HY S, (B.2)
i i

where H = h+ Vy(S%). If we consider a simple cubic crystal with nearest neighbour interac-

tions, the interaction strength is Vo =} ;V;; = 6J. The fluctuations are given by

1 ~~
H' =—3 Y ViSiSs, (B.3)
i#]

where S7 = S5 — (5%), where the subscript zero denotes the average is to be taken with respect
to the MF Hamiltonian. Note that a constant contribution to the ground state energy has been

dropped.
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Mean Field Operator Approach

We work in a basis consisting of eigenstates of the MF Hamiltonian

A, = ( B ) : (B.4)

The eigenvalues of this matrix are £+ = +E = +4/ ATZ + %2 and the associated eigenvalues are

H A H A

HiALE A LE

Y1) = ( TN ) ¥2) = 0 < A ) : (B.5)
—3t3tE E

DI DT
|
NI

where 1 corresponds to the E_ state and 2 corresponds to the E state. If we define the MF

operators to be L;; = |¥;) (¥, then the z component of the electronic spin operator is given by
§¢ = cn[Li1 — Laa] + ci2[Li2 + Loy, (B.6)
where

== cr2=-——. (B.7)

Magnetization

The ground state MF magnetization is given by

IS = (s = gt T ®3)

Inspection of this equation immediately reveals that in order to have (S%)g = 0, we require

h = 0. With 2 = 0, we see that (S%)p = 0 is a possible solution. Another possible solution is

1 2A\ 2
(590 =5 1—(—) (B.9)

Vo

provided that A < % This solution corresponds to the ferromagnetic phase of the system.
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Susceptibility and Correlation Functions

The longitudinal component of the static susceptibility is given by ¥ = 8(5;)0_ Differentiat-

ing the ground state MF magnetization with respect to 4, we find the zero temperature static

susceptibility to be

X5 (H)

BT Ty B.10
where the single ion susceptibility is
A? 1 3H? H*
FH=—~—|l—=—+0(—)|- B.11
W)= oyt Taal Tt (3) (B-11

As will be shown, the static susceptibility may also be obtained from the imaginary time con-
nected two point correlation function.
Using the Matsubara formalism, the cumulant part of the two point correlation function, or

connected Green’s function, for the system is given by

=) ~(rSi@en (- ffarvo))550)) .

<Tfexp (— Jis drV(r)) >0

where in the final expression the averages are taken with respect to .7 r. We define the

unperturbed propagator to be

g(7) = —<TT§Z(T)S~Z(0>> (B.13)

0

Z—C%2<L12L21+L21L12> —C%1<L11L11+L22L22> + (593,
0 0

where the 7 dependence of the operators has been suppressed. Note that the cross terms be-
tween the L;; and L;; operators, as well as the terms between the L; and L;; operators with
i # j, are identically zero. Contracting the operators and transforming to frequency space we
find

2Ey)
5 + Bct (D) + Day — D?,) 86,0, (B.14)

. 2
—g(iw,) =cHDp——"—
( n 12 E221 - (la)r)

with E>; = 2E = v/A? + H?. Note that at T = 0, we have —g(0) = x§°, where x§° is the static
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single ion susceptibility given in (B.11). We find that when (S%) = 0, at finite temperatures, the
spectrum develops a purely elastic zero frequency component.
In the random phase approximation, the Green’s function is given by
GRA (k. iggy) = —8UiP) (B.15)
T 1+ g(i0a) Vi
We see that in the zero temperature limit the static susceptibility given in equation (B.10)

follows from the RPA Green’s function

Z = _GRP(0,0 = | B.16
x (0.0 r—o 1+80)\Volr_ (B.10)

For low energies, in the limit 7 — 0, we find

—g(ia,) ~ A+ B(iw,)?, (B.17)
with
2¢2,D 2¢2,D
A=—22 p= 12712 (B.18)
21 E3
The Green’s function is given by
1 —A?
G(k,iw,) = § = (B.19)
) 1 . VA2 )
etV B~ (o2 =Y

and the spectrum is given by

[A VA2
W, = E—u%;-:Em 1 - Vix§(H). (B.20)

In the absence of a longitudinal field, the spectrum softens to zero at a critical transverse field

A. defined implicitly by 1 = Vo x5°|gz—0. To leading order in %, the gap in the spectrum at A,

3V, 3
%zHﬂzfzng (B.21)
C

These expressions prove useful for comparison with the results of the spin half spin half model
dealt with in Chapter 4.

due to a longitudinal field will be
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Appendix C

A Diagramatic Expansion for Spin

Systems

We begin this appendix with a general discussion of spin cumulants and their associated gen-
erating functions. Spin cumulants play a central role in the treatment of interacting systems
of spins using diagrammatic perturbation theory. The development of a diagrammatic method
for treating quantum Ising systems is a primary accomplishment of this thesis; hence, spin
cumulants are discussed for reference in Section C.1.

A diagrammatic expansion for spin systems was introduced by Brout in 1959 [60, 61].
The history of this formalism, its application by Stinchcombe to the spin half transverse field
Ising model [26], and related approaches, are discussed in Chapter 6, where we develop a field
theoretic formalism for quantum Ising systems, and a corresponding set of rules to perform
diagrammatic perturbation theory, and show that the resultant theory is equivalent to that of

Brout. We present an overview of Brout’s theory for easy reference in Section C.2.

Cumulants and the Generating Function

Following a 1963 paper of Englert [97], we consider the expression

M, (x). (C.1)

The function Z = (¢™*) is the generating function for x since its derivatives % li=0Z = (x") gen-

erate the moments of x, and M, (x) are the associated cumulants. A moment can be expressed

180



in terms of cumulants by considering all possible subdivisions of the moment in question,

M, (x) = (x") — Y My My, ... Mp,. (C.2)
ny+ny+...4+ng=n

The first four cumulants of x are given in terms of the moments by

M (x) = (x) (C.3)
Ma(x) = (%) = (x)?

Ms(x) = (%) = 3(%) (x) +2{x)°

Ma(x) = (&%) =42 (x) = 3(%)? + 120) () — 6(x)*

For a spin system, we generalize to the joint cumulant generating function

InZ = 1n<TTexp(Zh¢‘(rj)S§l(rj))> , (C.4)
i 0
where we have given each imaginary time 7 a label j. This is to indicate we are dealing with a

discrete set of imaginary times; summation over the set is implicit. That is
u m S m
b (1) (1)) = ) b (1)) (7). (C.5)
j=1

The superscript 4 = (x,y,z) or (+,—,z), and again, summation over the repeated index is
implicit. Joint cumulants for spin systems are discussed in a 1963 paper of Stinchcombe et al.
[98]. The cumulants are given by

" d

dhH(7;)

InZ = M, (TT f[sﬂ(rj)). (C.6)

j=1 h=0 j=I

Note that in the definition of the cumulant, we have left off the site index of the spin. This
is because cumulants of spins belonging to different sites are equal to zero due to their statis-
tical independence (averages are with respect to the single ion Hamiltonian Hp). Indeed, the
statistical independence of spins at different sites leads to

ln<TTexp[;hf(Tj)S#(rj)}> :;1n<TTexp {h,‘.‘(rj)sf‘(rj)b : (C.7)

0 0

because spins on different sites commute. We see that any mixed partial derivatives of our

cumulant generating function involving spins at different sites yields zero. Hence, any joint
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cumulant of spins at different sites is equal to zero.

We may generalize our discussion of spin cumulants to a continous formulation by defin-

ing the generating functional to be Z =( T ex B dtf(t . The cumulant generating func-
gihe g g PUo g g

0
tional is then given by

mz=Y . /drl /drn (Tff ). f(rn)). (C.8)

This is known as Kubo’s generalized cumulant expansion, and is reviewed in a clear 1962 paper
of Kubo [126]. If we take f(7) = h*(7)S*(7) then the moment of a time ordered product of
spins and the associated cumulants are obtained by taking functional derivatives with respect

to h* (1), rather than taking ordinary derivatives as in equation (C.6).

The Diagramatic Expansion

Averages of spin operators are of primary importance in magnetic systems. The two point
correlation function yields the excitation spectrum of the system and is intimately related with
the magnetic susceptibility, as will be discussed in Appendix D. Brout, building on his work
on random ferromagnets, has introduced a diagrammatic perturbation theory for calculating
averages of spin operators where the perturbation parameter is %, z being the effective number
of neighbours felt by each spin [60, 61]. This is known as the high density approximation. We
briefly outline Brout’s formalism here.

Taking Q,(71,..., %) = Tr [1; Sk’ (1), with n; being a site index, and y; € (+, —,z), we’re
interested in calculating averages of the form

<TT exp ( — Oﬁdrv’(r)) Q>o

(Q) = (C.9)

<TT exp ( —JF drV’(r)) >0 |

where, suppressing the imaginary time dependence, V' = —5 Zl vy V“ VS“ S V. The prime on the

interaction is meant to indicate i = j is excluded from the summation. We now introduce a
factor of £ into the average, V'(7) — £V'(7) and Q — £Q, to keep track of the order of terms

in a series expansion, and we bring the denominator of the above expression into the numerator
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as follows

v, Sl (BB g, ...dfn<TTV’(‘L'1)...V’(Tn)Q>

E(Q) = 0 (C.10)

Z;":O%énff...ffdrl ...drn<TTV’(r1)...V’(fn)>
Lo

0

n 1

1 / ../Oﬁdrl...drn1M,l(V(171)...V(Tn1)Q)»

where V = —5 Ly, | V” VS“ S" now includes terms where i = j. In the first line, the spatial sums
in the interaction V' exclude terms with i = j. In order to obtain the cumulants in our diagram-
matic theory, we add and subtract the missing terms, which leads to the unrestricted sum in the
interaction V in the final line. Now that & has served its purpose, we set it to one. Note that
each power of the interaction V carries a factor of —1 which cancels with the overall factor
of (—1)""1; hence, for a ferromagnet, the overall sign of each diagram is positive. M, in the

above expression is to be taken as the cumulants of the interaction V and Q,,, i.e.,

Mi(Q) = (Q)o My (V1 0) = (V,0)0 — (Vz;)0(Q)o, (C.11)

and so on. Recall that the interaction V involves a double sum over crystal sites, and, when
the average is taken with respect to Hy, spins at different sites are statistically independent.
By expanding the above expressions in terms of cumulants at single sites, we are led to the

following graphical representation of the series in equation (C.10) [98]:

1. There are primary and secondary vertices. The primary vertices are labelled by the spins
in Q, and the secondary vertices are labelled by spins from the interaction. Draw a circle

around each primary vertex.

2. Each bond carries a factor of i, j, 7;, and makes a contribution of %Vf; ¥ from the inter-
action. The bonds representing an interaction between the z components of two spins
are given by a wavy line. The bonds representing an ST or S~ interaction are given by

straight lines with an arrow.

3. Join the bonds to the primary vertices and each other in all possible ways. Neglect any
diagrams in which the bonds are completely independent of the primary vertices. Each
vertex represents a cumulant of the spin operators. The cumulant is determined by the
number of bonds flowing into it; each wavy line is a factor of S, each straight line
flowing into the vertex is a factor of S, and each straight line flowing out of a vertex is a

factor of ST. The spin from the primary vertex should be included in the cumulant from
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the primary vertex.

4. Each graph carries a symmetry factor. We get a factor of (n — 1)! from permutations of
the interaction Vz, that cancels with the factor of ﬁ in the perturbation expansion. We
also get a factor of 2", where n; is the number of longitudinal bonds, from swapping the
spins in each longitudinal interaction. Finally, since not all permutations lead to distinct

diagrams, we must divide by a factor of g, the symmetry factor for each diagram.

5. Last of all, we integrate over all imaginary times, and sum over all spatial indices, from

the secondary vertices. The sum over the spatial indices is unrestricted.

Fourier transforming each spin into frequency space, and each interaction into momentum
space, leads to the same set of rules, only now we label each bond with momentum ¢ and
Matsubara frequency i®,. We conserve momentum and frequency at each vertex and sum over
momenta and frequencies from each secondary vertex. Each momentum summation carries a
factor of %, where N is the total number of sites in the sample. Note that in each diagram, all
of the momentum dependence comes from the interaction, which is associated with the lines in
the diagram. The vertices, which are associated with the spin cumulants, carry no momentum
dependence. The spatial index on the spins is no longer relevant, as we are now dealing with
cumulants of spins at a single site.

We have calculated the moment of a time ordered product of n spins (Q,). In our diagram-
matic rules for (Q,), we allow the diagrams to have disjoint parts provided that each disjoint
part contains at least one primary vertex, viz., we must sum over every possible subdivision
of the primary vertices. Recall that a moment can be expressed in terms of cumulants by

considering all possible subdivisions of the moment in question. That is,

(Qn) =M, + ) My My, ... My, (C.12)

ni+ng+tng=n
where the second term represents the sum over the product of all possible cumulants of lower
order. From this it follows that the n'" order cumulant M, is given by all totally connected
diagrams, where each primary vertex is connected to every other primary vertex.

In Chapter 6 of this thesis, we derive an effective field theory for quantum Ising systems.
By performing a perturbation expansion of the field theory in the standard way, we are able to
derive a set of diagrammatic rules equivalent to those listed above. The field theory is concep-
tually much simpler than the approach of Brout, and offers the advantage of a renormalization
group treatment of a system’s critical behaviour.

Recall that the perturbative parameter in our treatment of spin systems is %, z being the

effective number of neighbouring spins. In momentum space, the order of each diagram is
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determined by the number of free momentum summations it contains. Indeed, following ref-
erence [127], if ry is the effective range of the interaction, and « is the density of spins, then
Zr~ rga, and the range in reciprocal space will be gg ~ % ~ (%)% In one dimension, the frac-
tion of terms in the first Brillouin zone for which g < ¢ is ’;—0 = 26%. Similarly, the fraction
of terms % for which g < gg in a momentum summation over the first Brillouin zone in three

dimensions is

= ~ . (C.13)

No_ 1
- ~05 52 C.14
NL8@) ~ 8 =8 (C.14)

where g is the average of g(g) with ¢ < qo.
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Appendix D

Susceptibilities and Correlation Functions

Consider a Hamiltonian for a spin system of the form H = Hy+V, where Hy = }; H(ﬁt. is a
sum of single ion Hamiltonians, and V = —% Yitj Vlﬁt vSl‘.L S]V is an interaction between spins at
different sites. The indices are i, v = x,y,z, or u,v = z,+, —, depending on what proves more
convenient, and we sum over repeated indices. In the Matsubara formalism, the cumulant part

of the imaginary time spin spin correlation functions, or Green’s functions, are given by
_<TTSIH(‘L'1) exp ( - Oﬁd‘CV(T)):S'\]‘?(Tz)>

<TT exp(— JE drV(r)) >0

where Sl“ = Sl“ — (Sfi ). The averages in the final expression are taken with respect to Hy. As

6} (1) = (TS (S (e2) ) = °, o)

is conventional, we define the Green’s function with an overall minus sign. In the absence
of the minus sign in our definition of G, we use the symbol ¥ = —G because, upon analytic
continuation to real times, ¥ will yield the dynamic susceptibility of the spin system. The poles
of the Green’s functions yield the resonance peaks seen in, for example, neutron scattering
experiments. A goal of condensed matter physics, and a primary accomplishment of this thesis,
is to develop ways of evaluating expressions like equation (D.1). In the following, we will
explore some of its properties, and define other relevant, related, functions. The discussion in
the introduction to this appendix can be found in many textbooks. We reproduce the material

here to establish notation and conventions, primarily following references [5, 128].
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Transforming to Fourier space we have

SH (1) e Mgt (z Sk (z e’kr’S“ (D.2)
S,’j(r):EZeiWS,f(iwn) SH (ieon) = / dre—iwnfs,i‘(r)
0
n
for the spins, and
G.UV Ze—zk ri— r,)GHV( 7) GHV Zezk ri—r; GIJV (1) (D.3)

G (1 —m) = 5 Ze—iwn“l—fz)GgV(iwn) G (i) = /O dte!™ Gl (1)
n
for the correlation function. The interaction, in Fourier space, is given by
V=GR S PG LY
q
and

B _
/ ATV (t) = — = / dr Y VRS o)V (x) (D.5)
0 0 I#J

?%ZZv;vss@w»Sﬁ(—iww-
q n

As previously mentioned, the dynamic susceptibility (response function) of the system fol-

lows from the imaginary time correlation function. The relation is
2" (0) = -G} (io, - o+i0"), (D.6)

where, in real space,

X (=) =—G' (1 —1') = i6(1 —f')<[:9\,-ﬁ(t)75,v-(f')]>- (D.7)

The spectral density is given by
Pl (@) = 2mm 1 (0)] D3)
H —BE, —BEn
sza (@0 + Ey — Ep) (n|St ym><m|svk|n>(e BEn _ =P )
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or, in terms of the Green’s functions,
pi (w) = i[G,ﬁ‘V(iwn — 0+i0") -G (iw, = 0 —i0")|. (D.9)

Note that the spectral density is often written in terms of A}’ () = ﬁ ol Y(®) in which

case
oo AlJV(a)/)
uv _ ! k
n (@)= _/_wdw ®— o' +i0* (0.10)

The real and imaginary parts of of the dynamic susceptibility are related by a Kramers-Kronig

transform
1 Q
Re[y; 3”/ d Imix )]. (D.11)

The connected real time correlation function is given by

—~

SEY (1 —1') = (S (1)S¥ (1)), (D.12)

This function is related to the spectral density by the fluctuation dissipation theorem

uv
uv Py (@)
St (o) = g (D.13)
Finally, we consider the static susceptibility, y*" (k) = Re[}(,ii Y(® = 0)]. In the high tem-

perature limit (0 < T'), we find it to be related to the equal time correlation function as follows,

doIm[x" (w)]
T )

pst =0~ [ — "V (k). (D.14)

where the Kramers-Kronig relation is used to obtain the final expression. The classical expres-

sion for the static susceptibility may also be obtained by differentiating the free energy

J*F
uv
= D.15

M oy (-15)
where hl” is a field conjugate to spin Sl“ . We differentiate between static and dynamic ex-
pressions for the susceptibility by the absence of a time (or frequency) argument in the static

case.
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Ising Model: Structure of the Green’s Function

In this section, we specialize to the case of the Ising model, that is, we only consider a longi-
tudinal interaction between spins on different sites. The formalism discussed in Appendix C,
was applied to the Ising model in a transverse field in a series of 1973 papers by Stinchcombe
[26, 62, 63]. Here, we review the structure of the connected longitudinal correlation function,
as presented in reference [26].

Recall from Appendix C that the connected two point longitudinal correlation function,
or, equivalently, the second order cumulant, may be expressed as a sum of totally connected
diagrams. If we define an irreducible diagram as a diagram that cannot be seperated into two

parts by severing a single bond, then the correlation function may be written as

GV (iw,) =9 (iw,) — G (i0n) Vi G (i) (D.16)
=4 (i) — VI i)
1+ V% (iwy)

where 4*V is the sum over all irreducible diagrams. This is an exact result; all the complexity
of the problem is contained in the calculation of ¥*". Note that u and v may refer electronic
spin components, or they may equally well refer to nuclear spin components. The z index
refers strictly to an electronic spin, and comes from the longitudinal interspin interaction. Our
definition of G differs from that of Stinchcombe by a minus sign. What Stinchcombe refers
to as G, we refer to as ). Furthermore, our "V is equivalent to Stinchcombe’s —.Z*", and
Stinchcombe uses a different Fourier transform convention than what is used in this thesis. This
accounts for the factors of B appearing in Stinchcombe’s work that aren’t present here. The
conventions adopted in this thesis are meant to eliminate numerical factors from subsequent
calculations.

The longitudinal component of our Green’s function reduces to

G (imy)
GZ(iw,) = —*~ : D.17
) = T o) 1D
To lowest order we have 45 (iw,) — g(iw,) = —(S°(im,)S*(—iw,))o, where the average is

taken with respect to the single ion Hamiltonian. Making this substitution yields the longitudi-

nal Green’s function in the random phase approximation (RPA),

(i)

G (io =——
k ( n) RPA I‘I’ng(lwn)

(D.18)
In order to analyze the collective excitations of a spin system beyond the RPA, the sum
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over irreducible diagrams may be separated into its real and imaginary parts 4 (@ + i0h) =
Re7*(w) +iImi* (). This yields
Rej*(w) +ilm;* (o)

G¥ i0") = : D.19
¢(@+i07) 1 + ViRef (o) + iV Im¥ (o) (0.-19)

We define the collective mode E}, to be a solution of
1+ ViRer*(Ey) = 0. (D.20)

The lifetime Ff associated with the p" collective mode E,f follows from the p™ (complex)
pole of G(®), z¥ = E; —iI'}. It follows that

¥ = V,ImZ(E?). (D.21)
Alternatively, we may work with a self energy by defining ¥* = g[1 + ¥]~! which yields

22 ( _ gliwy,)
Gy lion) = 1+ Veg(ian) + Zi(ion) 0.22)

RPA Green’s Function

Here we examine the structure of the longitudinal RPA Green’s function of an Ising system

g(io,)

_— D.23
1+ng<iwn) ( )

Gk(iwn) =

making use of the mean field (MF) operators discussed in Appendix A. Writing the Green’s
function as G; ' (i®,) = g~ (i) + Vi we see that the RPA Green’s function essentially consists
of a momentum dependent shift in the MF Green’s function due to the interaction Vj. The MF

Green'’s function (to be derived in Appendix E) is given by

2E
. 2 nm
g(l r) - Cmn mn E’% (l r)z gel a),.,O ( )

This function contains poles at the differences between each of the systems MF eigenstates,

E,.,. = E, —E,, as well as an additional elastic contribution,

2
8el = B (ZcimDm_ {ZcmmDm:| ) ) (D.25)
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that vanishes in the paramagnetic phase, and in the limit 7 — 0. The ¢, are the mean field
matrix elements of the S operator, and the population factors are D,,, = D,, — D,, where
Dy = Zy e PEn,

Making use of the identity

1 L.
Jim = gZ()—C) Tind(x), (D.26)

we take the real and imaginary parts of g(® + i€). We find

2E,n
Re[g( Z cmanngz |:—_} _geléw,Oa (D.27)

n>m

where &7 denotes the principle value, and

2

Im(g(e)] =~z ¥,

n>m

(m|S%[n)o

Dy (S(Enm — @) = 8 (B + a))) . (D.28)

Note that at zero temperature, the real part of g corresponds to the Van Vleck contribution to
the susceptibility, that is, it is a contribution arising solely from the splitting of the energy levels
of the system’s eigenstates.

To understand the elastic contribution to the spectrum, it is advantageous to write

2
Dy (Epm — @), (D.29)

Im[g(®)] = (m|S%[n)o

where the summation over n and m is now unrestricted. If @ £ 0, all terms with n = m vanish,
as Dynd(@) = 0; however, at @ = 0 the n = m terms lead to the elastic contribution to the

spectrum, as we will show below. The Kramers-Kronig relation tells us

dQIm ]
@/wn 8 w. (D.30)

The integration is straightforward except near @ = 0 where we have

€ dQ1 Q
oty [ A2 lE(E)

D.31
£—0 T Q (D.31)

For further discussion of the elastic contribution to the spectrum see the book Rare Earth

Magnetism, by Jensen and Mackintosh [65].
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We define the free field propagator to be

1

T

(D.32)
If the Ising model is treated using the Hubbard-Stratonovich transformation, the expression
above will be the propagator for the free auxiliary field, hence the name. Nomenclature aside,

we divide the free propagator into two parts, Z(i®,) = Di(i®,) + D{8;w, o, Where

- MsmlEam — (i03)7]
Dk(la)r) - Hp[(Ekp)z _ (l(l)r)z]

(D.33)

_ Hn>m[E1%m B (iwr)z]
Hn>m[E1%m - (iwr)z] — Vi Zn>m C,%mDmannm Hp,q#m,n [qu - (iwr)z] 7

and

I_Ip(E]f)2 Hp (E]f)z - gele Hn>m Er%m

It is convenient to factor the denominator of Dy (i®,) because, in the zero temperature limit,
this yields the RPA modes of the system. At finite temperatures, there are additional poles
corresponding to excitations between excited states. It is a matter of convenience to include
the iw, = 0 term in Dy (iw,), and then subtract it from Dg. Note that D,? o< g,; vanishes as the
temperature goes to zero, and in the paramagnetic phase of the system. The ratio of the product
of the mean field energy levels to the product of RPA energy levels occurs quite frequently,

hence we will designate it

E2
. = Hn>m pnzm‘ (D35)
Hp (Ek )
In terms of Ry, we find
0 8elViR?
Dy = ————. (D.36)
1 — getViR

We now consider the inelastic part of the RPA Green’s function G = gD, where g is given
by equation (D.24) with g,; = 0 and D is given by equation (D.33). D has zeros at all the MF
energy levels, while g has simple poles at all these levels. Hence, the poles of g contribute
nothing to the pole structure of the longitudinal RPA Green’s function. This is a rather trivial

observation; however, it is worth noting that any function F(z), with simple poles at the MF

192



energy levels, will not alter the pole structure of F(z)D(z). This fact proves useful when
examining corrections to the RPA result.
We now decompose the RPA Green’s function into a sum over its constituent modes, in

order to obtain the spectral density of each mode. The RPA Green’s function is given by

Gi(iw,) = Gi(iw,) — G§' 8, 0, (D.37)
where
2 2 N2
~ ¢z Dyn2Em E;, —(io,
Gk(ia)r) _ 5 Zrn>m2 mn lZ—It>s7énm[ t ( ) ] 5 ‘ = (D.38)
Hn>m[Enm - (lCOr) ] — Vi Zn>m CmannZEnm Hp,q;ém,n [qu - (l(l)r) ]
and the elastic contribution is
14+2ViR 2 DpmE 1
Gzl — gele + k an>m le’l mn=nm ) (D39)

I — g ViRy

The denominator of 6k(iw,) has been written out in full, rather than being expressed in terms
of the RPA modes. This is to illustrate the fact that if one of the MF matrix elements ¢,
vanishes, there will be a common factor of E2, — (i®,)? in the numerator and denominator of
6k(iwr). Hence, when a MF matrix element is zero, there will be a pole at the corresponding
MF energy level in the RPA spectrum; however, this pole will carry no spectral weight. The
inelastic part of the RPA Green’s function has the form Gy (z) = %, where P(z) and Q(z) are
polynomials in z, and deg[P(z)] < deg[Q(z)]. Assuming no degenerate modes, we may perform

a partial fraction decomposition to obtain

~ v PE)] 11
0= 2 5 | o rp D) 40
where
P(E]) =P(=E}) = Y, cpuDun2Ewm [] [E—(ED)?] (D.41)
n>m t>s7#nm
0B} = -0 (~£0) =26 T] | (BD)* - (B0
7P

The spectral density is

P(E;)
Q'(EY)

Ap(w) = —%Im[Gk(ia)r — 0+i6)] =) {6(@ —E}) — 5(a)+E,f)} ,  (D.42)
p

193



and the dynamic structure factor is given by

2 P(E?
S R

5(w—EP)—8(w+EP)|. (D.43)

Integrating over frequencies, we find the equal time correlation function to be given by

L [do v« P(E]) sinh(BEY) 1
Si(t =0) = o ESk(co) = ; O/(E7) cosh (BED) — 1 + EGk : (D.44)

where, as with the mean field Green’s function, we have included the elastic contribution stem-
ming from the zero frequency pole. We may compare this expression to its classical counterpart
(0 << T). We find

2 P(E) G¢. (D.45)

lk:ﬁsli(t:o):ZE_lfQ/(Eg) i

p

As a consistency check of the formalism presented here, consider the imaginary time dy-

namic correlation function

x(ioy) = —Gilioy) = — Y 2Ef

P(E?) [ 1
~ L O'(EY)

¢ S, 0- D.46
(iwr)z—(E;?)Z%G" 0 (D40

Summing over Matsubara frequencies should yield the equal time correlation function,

(D.47)

IR .\ To0 [*do P(Ey) !
Slr=0)=gLutio) =" | Y2 5@5 o @)

T=0

By performing the frequency summation, or the integral in the zero temperature limit, equation
(D.44) may be recovered, as expected.

As a final note, we point out how the analytic structure of the Green’s function changes
when the effect of fluctuations beyond the Gaussian approximation (RPA) are included by
renormalizing the system at its critical point. In the Gaussian approximation, the Green’s

function has the form

1
Giliwg)| o —m (D.48)
rea  (i0,)> —E}
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Under renormalization, this changes to

—-1+2
G(im,) < [(ia)n)z —E,f} : (D.49)

This shows that at the critical point, rather than having the usual quasiparticle pole in the
Green’s function, there is a branch cut corresponding to a continuum of excitations. This
implies the excitations at the quantum critical point are overdamped, and the system will show

relaxational dynamics [28-30].

195



Appendix E

Spin Cumulants

Spin cumulants play a central role in the analysis of interacting spin systems. In this appendix,
we calculate cumulants of up to four spin operators for a system with an arbitrary single ion
Hamiltonian. Cumulants of this order are necessary for calculating corrections of order % in
the high density approximation developed in Chapter 6. We calculate the cumulants using the
formalism discussed in Appendix A. Our focus will be on cumulants of the S§* operator; how-
ever, as any operator may be expanded in terms of mean field (MF) eigenstates, the results are
quite general. Essentially, with a little modification, the results of this appendix are completely
general expressions for the cumulants, or correlation functions, of operators acting on a system
with a discrete set of energy levels.

The calculation of the cumulants is straightforward, but rather tedious, and the resulting
equations are quite cumbersome. We present them here for reference, and note a significant
simplification that occurs in the zero temperature limit. In writing out the cumulants we will

make extensive use of the function (and products of these functions)

K> (iw,) = _ (E.1)

o E,—E,—iw’

the properties of which are discussed in Appendix A.
We begin by writing $° in the MF basis

St = Zcmmme + Z CrmnLmn - (EZ)
m m#n

The lowest order cumulant is given by

M (S%) = (550 =Y CrumDnm- (E.3)
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Two Spin Cumulant

Defining S; = $%(t;) and L, = L,;,(7;), we find at second order

2
Mo(T:8152) = Y comenn(TeLpLado+ Y. Y ]cmn|2<TTL,£mL%m)o—{ZcmmDm} (E.4)
m

mn P{12}n>m

where P{1,2,...n} denotes the set of all permutations. Contracting the MF operators we find

<TrL1 L2 >0:Dm5mn Z <T1L1 L2 >O: _Dannm(TIZ)

mm—nn mn—nm
P{1,2}

where we’ve set 7;; = 7; — 7; for brevity, and defined the MF propagator to be
Ko (7) = Koy () + K2, (—7)
nm nm nm :

We now transform our cumulant to frequency space
2 B :
My (@, 0,) = F{Mo(T:5182)} = [ | /0 AT M (T,5,S5).
i=1
Note that

2 B ‘
H/O dTielwriTiKnm(TIZ) = ﬁ ZKnm(AS)&o,l ,7%5(1),.2,—/% = BKnm(wn )5wrl+wr2707
i=1 A

where

2E,m

Kim(0,) = —5—7—.
) = B o

Our final result for the second order cumulant is

M2((Dr17wr2> :ﬁ Z |Cmn|2Dnm

n>m

2\ 2
+p? (ZcimDm— {ZcmmDm} ) [ 15,0
m m i=1

2E,.n
E2 . 2 6(1)r1 +a),2,0
mn (lwrl)
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Performing a frequency summation, we obtain the MF correlation function of the S* operator

g(,)=— L ZMz Wy, @y, (E.11)
2E 2
= - Z |Cmn| Dmn% _B (chzanm_ [ZcmmDm:| )660,1 ,05
n>m 1 m m

which can be written in terms of K, (i®,) as
2
—g((grl Z |Cmn| DmnKnm(l(Dr + ﬁ (Zcmm |:ZcmmDm:| ) 6(0’.1 0- (E12)
n>m m

In the zero temperature limit, this expression reduces to

Yoot lcin|2En Hm#E,f“ — (ioy,)?
HﬂEr%l - (ia)”l)z

—g(w,) = (E.13)

Three Spin Cumulant

At third order we have

M;3(T:S18283) =(TtS15283)0 — Ma(T1S152)(S3)0 — Ma(T:S153)(S2)0 (E.14)
— M (T:5253)(S1)0 — (S1)0(S2)0(S3)0

Expanding in the mean field basis, we find

(T:818283)0 = Zc;m<TfL}nmL,%1mL,§1m> (E.15)
m

+ Z Z cmm|cmn’2<TTL1£1le%rmLi31m 0 + Z Cmncnpcpm<TTLrlnnL%pL;m>
P{1,23} Lm#n m#n#£p
In the case of a two level system, the final term in this expression is zero, and the third order
cumulant vanishes altogether above the MF critical temperature. In principle, in a system with
more than two levels, this cumulant may be non-zero, even in the paramagnetic phase of the
system. In the summation in the third term, we sum over all m, and for each m we sum over

all n, p > m such that n # p. Using the formalism in Appendix A to contract the MF operators,
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we find

Y (TeLyyy L2 LYo = — Dy Y, Ko(ti2: 1) (E.16)
P{12,3} P{12,3}

_Dm Kmn(TZI) +Kmn(f31> +Kmn(7:32)

Z <TTLr1nnL1%pL?7m>0:_DPn Z Kr[r)LZ(T3l;T23)+me Z K;ﬁ?;(le;fﬁ),
P{123} P{12,3} P{123}

where we’ve defined
Koun(7) = Ky (T) + Ko (—T) KP4 (71:72) = Ky (1)K (T2). (E.17)
We now transform our cumulant to frequency space
3B .
M3 (o, @, Op,) = F {M3(T1515253)} = ,I:—!/O dtie' " M3(T;S15,53) (E.18)
= F{(Tt515283))0} — BM2(@1,®)(53)000,,.0
— M (@1, @3)(S3)08a,,,0 — BM2 (@2, @3)(53)000,,,0 — ﬁ3<5>(3)f115w5,0-
i=
For reference, we note that
F{Km(t12)} = [SZZKmn(ls)Swrl 7%5@27,% 6(9,3 0= [321(,,1,,((1»l )5wr1+wr2,05wr3 o (E.19)
s
and

FK (ti2;731)} = B §K,?m</1s)l<ﬁq<ﬂ¢>8w,l 21,00, -2,80,, 2, (E.20)
= BKhi(—0ry; wrs)awrl +0ry+ 04,05
where, in the last line, we define
Kp (@)K, (05) = KD (03 ). (E21)

Making use of these expressions we find our Fourier transformed spin averages to be given by

3
FUTeL Ly Liyi)0} = BDin [ | 8, 0, (E.22)
i=1
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A= T (b} =B0m ¥ K008, 0,000 (E2)
P{1,2,3} Py}

ﬁzD { mn ((Drz ) 5a),z+w,3 705(*”1 0+ Kmn (wrl ) 6(0,1 +r3.,0 6@,2 01 K (wrl )5(»,1 +a, ,05(»,3 0

Azz,%?{ Y, (T:L,.Li,L>.)0 }

P{1,2,3}
nm nm .
- ﬁme Z K (wrl s wrg)awrl +0r, + 05,0 + ﬁDpn Z K wrl 5 0~)r2)6a),1 + 0, + 0y ,0-
Ploy,} P{oy,}

Note that we have made use of the fact K (—®,) = —K?, (®,).

Some algebra will show that, in the low temperature limit, terms in (775152S53)0 cancel with
the lower order cumulants, significantly reducing the complexity of the expression. We are left
with

%%M3<wr1 y Dpy wr3) = Z Cmm|cmn|2A1 (wn y Dy 5 wr3) + Z CmncnpcpmAZ(wn , Dpy a)r3)

mn m#n#p
(E.24)
with
A (wrl ) a)r27 qu - mn Z Kmn a)rl > wr2)5a),l +0py + Oy ,0 (E25)
P{wrl}
Az(a)"l ’ wrZ’ wr3) = Bme Z K:lnr;;l(wrl ) wr2)6wrl +wr2+wr370
Ploy,}
+BDpn Y, K (03 01,) 80, 4@, 00,0
Ploy,}
This may be further reduced by considering the population factors in the A;s. We find
Yl,iE%)M??(wr] > Wpy wr3) = Z (cll - Cnn) ycln‘zA(l)(wr] » Dpy wr3) (E26)

n>1
+ Z Re[ClnCanpl]Ag(a)rl , Wy wr3>7

n>1
p>n
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where

A(])(a)rl ’ wr27 wr3 ﬁ Z wr] ’ wrz 560” +60r2+(1)r3 0 (E27)
P{awy,}

(Epy — (i0n)?)(Eyy — (i,

Ag(a)rl y Wry s (Dr3) = 2[3

)2) 560,1 +@y, +0p5 0-
Ploy,}

In the terms involving transitions between three MF eigenstates, we have used the fact that

Cnp = €y, for any np to combine terms in the sum.

Four Spin Cumulant

We now calculate the fourth order cumulant. We start our reduction of the MF operators with

L, such that m is minimal, unless otherwise noted. We find

My(TcS1528354) = (T:S1525384)0 — (S1)0(52)0(S3)0
My (T:S152)Ma(S354) — Ma(T:S1S3) Mo (TeSSa
— M;3(T:S15253)(S4)0 — M3(TrS15254)(S3)0 — M3(TrS15354) (S2)0 — M3(TrS25354)(S1)0
—M(T:5152))0(S3)0(Sa)0 — Ma(T25153))0(S2)0(Sa)0 — Ma(T7S154))0(S52)0(S3)0
—M>(T:5253))0(S1)0(S2)0 — Ma(T25254))0(S1)0(S3)0 — M2 (T7S354))0(S1)0(S2)0

S1)o (E.28)

(
) =M (T:S1S4) Mo (T:5253)

Expanding in terms of the MF operators, we find the fourth order spin correlation function to
be given by

(T:81525354)0 = Y. Coum Te Ly L Lo Lm0 (E.29)

mm—mm —mmT—mm

+ Z C}imlcmn‘zgl + Z Cmmcnn‘cmn|2§2

m#n n>m

+ Z ‘Cmn|4§3 + Z Cmmcmncnpcpm§4
= e

+ Z |cmn]2|cmp]2§5+22 Z Z CmnCnpCpgCqmBe,

p>n>m m n>m p>m q>m
p#nq#n.p
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where

El = Z <TTLzlnmL1%1mL§nnLﬁm>0+ Z <TTLI%1mL§nmLI£1nLim>O (E.30)

P{2,3,4} P{14}

2 4 1 3 3 4 1 2
+ <TTmemeLannm>0+ Z <TTmemeLannm>0

P{1.3} P{1,2}
n 1 2 13 74
By = Z <TTmeLnannan>0

P{1,23,4}
By = (T:Ly, L} Ly Lo + (TeLp L Loy Lo+ Y. Y (TeLb L2 L3 Lt o

mn—nnr—mn—nm mn—nm—mn—nm
P{1,2} P{3,4}

1 2 73 74
B4 = Z <TTmeLananpm>0
P{1,2,3.4}

1 2 13 74
Bs = Z <TTLannmmeme>0
P{1,23,4}

1 2 53 74
B = Z <TTLananpqum>0
P{1,2,3,4}

The terms with repeated MF operators must be dealt with carefully, so as to not over count

the possible unique time ordered averages of the operators. We place a tilde over the first five

functions to differentiate them from the expressions obtained in the low temperature limit.
Contracting the MF operators leads to rather lengthy expressions which are listed here for

reference. We begin by making the following definitions

rsK;ﬁZ(Tab; Teds Tef) = Krgm(fab)Kgq(Tcd)K;(f)s(Tef)7 (E31)
and

Erlrjz?z(rab; Tcd) = Krlrjzgz(fab; Tcd) +Kr€zgz<rba; Tdc) (E32)

rslzg?z(fab;fcd;ref) = rsKr%]z(Tab;Tcd;Tef) + rsK;ﬁZ(Tba;Tdc;Tfe)-
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We find

Bi =— Dy [ K™ (T12: 123 T34) + mnK ™ (T12:315743) + oK™ (T12:T343741)  (E33)

>mn . . mn . . Zmn . .
+ Ko (T125 7243 T31) + mnKony (T125 7235 Ta1) + mnKoy (T123 243 T43)

+ K (1135345 T42) F K (71357325 T24) + e K (T133 T323 T4 )

+ K (T133Ta15T24) + nK g (T145 Ta33 T32) + mnl?nn:r};l(fl4;r42;f23):|
—Dn, |:I?nn11rrzl(T12; T31) + Ko (T12: T24) + K (1123 T23) + Ko (T123 Tan)

+ K (1133 Ta2) + Kot (7133 Ta1 ) + Ko (T3 T3a) -+ Ko (T145 Tao)

+ K (7143 Ta3) + K (233 Taa) + Koo (1233 Ta2) + K (Toas T43)}
— D, [Kmn(ﬁz) + Kun(T13) + Knn(T14) + Kinn (723) + Kinn (724) +Kmn(T34)] ,

and

B,= Y [Dmn mnKonn (7235 125 T41) + D mn K (7133 7215 T42) (E.34)
P{1727374}

+ DK (1233 Ta2) + DKo (T13; T41)] )
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and

b

0
+ Kmn 732

n(T23) ( m (7243 T12) + Ky (215 T42)) (E.35)
(K (T34:T13 +Kmn(T31,T43)) +K,?m(f43)(Eﬁﬂ(fm;fm)+E$Z(T41;Tz4)>
+ K, (T34 (K (T32:T13) + K (Ta1; Tz3)) +K,?m(713)(Kﬁn"f(fm;le)+Kn";’,7(T12;T41)>
+ KD, (a2 (K"' T43; T14) K,'n”,'f(f41;f34))++Kmn(1’24)<K n (7235 T12)+E,,"f,§’(7:21;f32)>
+K2n(fl4)(K (T13,T21)+E%(T12;T31)ﬂ
—D, [Kmn(f43,712)+Kmn(f34;712)+K2n(fz4)Knm(T13)+K2n(T14)Knm(Tz3)
Ko (52) K (14)+ K8 (1220 + KD i)

+ Dy, [ (433 T12) + Ko (T343 T12) + Ky (124) Ko (T31) + Ky (T14) Ko (T32)

+ Ko (T32) Ky (Ta1) +Kmn<fl3)Kr9m(T42):| :

The B; and B terms are more complicated then the rest, as the sum over the permutations of
the imaginary time indices is restricted. For the remaining terms, as in §2, we may consider the
sum of all possible permutations of the imaginary time index because each of the MF operators
appearing in the averages is unique. For B4, we begin our reduction with L, as the resulting

equation is simpler in the low temperature limit. We find

By= Y [Dmn mnKoyp (74357125 Ta1) — Dinp mpKy ) (7235 T123 Ta1) (E.36)
P{1,2.3,4}

+D,, (KZZ’(‘L’43; ) — K)F (T23; T42))} :
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The final two functions are given by

Bs= ) [Dmp mpKonk (72157233 T42) — Dinn Koy (Ta15 7433 T42) (E.37)
P{1,2.3,4)

— Dyp npKpk (Ta15 1235 T42) + DKot (721 ’543)} ;

Be= ) [qu gmKph (72137323 T34) + Dy ( ap Kok (T215 T42; T34)
P{1727374}

- quZIr)z(T41;T42;T34)> + Dy qu%(T41;T32;T34)] -

In Fourier space, the fourth order cumulant becomes

4 B .
Mi({or}) =T] /0 dTie 7 My (T;S1525354) (E.38)
i=1

P

Z M3(a)r1 ) wr27 a)r3)<S4>060)r4 0
P{a),l.}

R Z Mz(a)rl ) w”Z) <S>(2)6wrl +(Dr2 awr3 6(1)1‘4

4
Q Z MZ(wrwwrz)MZ(wrsawm)_B4<S>3H5wri,0
P{ay} i=1

We find

El :ﬁDmn Z anyrnn:ll(wrl ; O + Oy s wr3)32a),i70 (E.39)
P{(o,l.}

2 nm .
—|— ﬁ Dm Z Kmn (a)rl s wrz ) 6(0rl +0)r2 +(X)r3 706(Dr4 ,0
P{oy,}

B*Din
4

Z Kinn( Oy, ) 50),1 +0r,,0 5a)r3 0 6(»,4 0
Ploy,}

EZ = Z 2[))Dmn mnKyIZ}::(wrl 5 Wr, + (P 60}'2)5(1\»1 + 0y, +Opy + 0,y ,0 (E.40)
Ploy,}

+ Bz(Dm + D) Ky (@5 wr3)6wrl 705wr2+a>,3+wr470 )
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BS BDmn Z mnKnm wrl;wrz;wm)éZwri,O (E-41)
Ploy,}

BZD

Z Ko (0 ©ry) Swrl +ar,,0 5wr3+wr4 0
P {a), }
B2Dy
2

mn .
+ Z Kmn (wn ’ wr3)5wrl +w,2,05w,3+w,4 05

Plo,}

§4 = Z |:B (Dmn mnK:[Zl(wrl;a)VQ;wrz+a)r3>+Dmp me (wrlaa)rl +a)r2,wr3>) 820)"',0
Plar,) L
(E.42)
- ﬁszK”ll)’l’:l,l(a)rl ; wr2)5a)rl +(Dr2 +wl‘3 >06(DV470:|

Bs = Z |:B (Dmp mpK;fer(wrl 5 Oy s 601’3) + Dy mnK;I:I;q:(wrl 5 Wy s wr3)
P{wrl}

m . .
- D}’lp n[)K;{[,m (wrl s a)r27 a)rl + wr3)> 82(1»[.,0
2 m .
+ ﬁ Dme}f(wrl ’ a)r3 ) 6(01”1 +a)i’2 70 6(0'”3 +wr4 O:|

Bﬁ_ Z ﬁ|: mq mq (wrlaa)rz—’_a)rg’wrz)
Pl{o,}

P ( qu;%)(wrl Wy + O3 Oy) — LIPK o (Ory 3 Oy (1);»3>>

+Dyn gnKign (@O, Ory O, + a)@)} Oy w0

In the final term of Bs, we have permuted the Matsubara frequencies, and made use of the fact

that under the delta function w,, = —®,, — @,,, to obtain
Z (K,’l';)"(a),1 s 0r,) + KD (03 a),z)) 8oy, +0ry 40y 0 = — Z K (0 0r,) 6, + @, +0y5.0-
Pl{oy,} Ploy,}

(E.43)

This facilitates taking the low temperature limit, which we now consider. Some tedious algebra

will show that, as was the case with the previous cumulants, all the terms in M, involving lower
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order cumulants cancel with terms in (S15,5354)0. We are left with

lim My({@:,}) = Y. cmmlcmn*Bi+ Y CoumConlcmn|*B2 (E.44)
T—0
m#n n>m
+ Z ‘Cmn|4B3 + Z Cmmcmncnpcme4
n>m mtntp
p>n>m m n>m p>m g>m
p#nq#n.p
where
B, :ﬁDmn Z an,]::;}:(wrl 5 O + Wy, wr3>6):a),l.,0 (E45)
P{a)ri}
By =— 2,BDmn Z mnKrTry’Z(wrl ; Wpy + wr3;wr2)5):a),i.,0
P{oy,}
B3 ﬁDmn Z mnK;zl;ry’: @5 WOp,y 5 (Dr3)5):a>,l.,0
P{w,t}

B4 - Z B ( mn mn (wrl 50)}’2’ a)rz + wr3) "‘Dmp me (wrl 50)}’] + a)rza wr3)) 520)y->0
Pl{aoy} l

BS ﬁ Z |: mp mp nm (wrl ’ wrza a)r3 62(0, 70 "’Dmn mnKnm (wrl ’ wrz’ wr?, 52(1»[
P{w,

m . .
— Dy npKrIsz (wr] s Wy Oy + wr3)5):wri-,0}

B6 —B Z { mq mq nm wrl ; O, + 55 Wy, 5260,,
P{ay,}

+Dyp < ap Ko (@3 O, + @33 Ory) — gp K (@3 O3 wrs)) 8y 0

+ Dy qu;fnZ(wrl 3 Wpy ' W, + O )SZwri,O:|
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Making use of the population factors, this further reduces to

}ig})Mzt({wr,-}) ~ Y ctilenl B+ Y crlein*BY + Y cricmlenn*BY + Y le1n|*BY

n>1 n>1 n>1 n>1
(E.46)

0 0 0
+ Z CllclncnpcplB4a + Z Cmmcmlclpcme4b + Z CmmcmncnlclmB4c
n#p>1 m#p>1 m#n>1

+ Z ’Cln|2’01P’2B(5)({wri})+Z Z Z ClnCnpCpgCq1 B,

p>n>1 n>1 p>1 g¢>1
pFENGFEN,p

where

B Z ]K]n wrl,a)rl‘f’wrz,wm)éZa),, (E47)
Pl{o,}

Blb =—p Z 1ﬂKr711(wr1;wV1 + wrz;w@)ézwrivo
Ploy,}

:_ZB Z 1K 1w71’wrz+wr3’a)rz)5):wri70
Ploy,}

B(3) =p Z angll(wn;wrz;wra)éZwri,O

Ploy,}

B, = Y [ Ko (O3 Oy O, + Opy) + p1 Kb (003 00, +wr2;wr3):| 0%, 0
Pl{oy,}

B4b:_B Z lei/,;) (wrl;er;a)r2+a)r3)6Z(0ri70

Ploy,}
0 1 . .
B4C = — B Z lmKlrﬁ (CO,] ; (Drl + (Dyz, (Dr3 )6Zwr,~ 0
Ploy,}
1
B=F L { 1 (03 @03 0r) + 1KD (03 013 wrs)} 0y ,,.0
Ploy,}

BO :ﬁ Z lqKnl (w}’l;a)}’z +wr3;wr2)52wri70.
Ploy,}
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